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Abstract. The propagator for the2D heat equation in an arbitrary linear space is shown to give
solutions of the two-component Kadomtsev–Petviashvilii (KP) equations, also called Davey–
Stewartson system. This propagator is subject to the Klein–Gordon equation and its right-
derivatives are required to be of rank one, that imply that it can be expressed in terms of
solutions of the Dirac equation. Large families of solutions of the two-component Kadomtsev–
Petviashvilii equations are constructed in terms of solutions of the heat and Dirac equations.
Particular attention is paid to the real reductions of the Davey–Stewartson type, recovering in
this way the line solitons and the multidromion solutions. Moreover, new solutions to the
Davey–Stewartson I are presented as massive deformations of the dromion.

1. Introduction

It is the aim of the present work to show that the free propagator for the heat equation in two
dimensions, with some conditions, determines a solution of the nonlinear two-component
Kadomtsev–Petviashvilii (KP) and related equations. Observe that was in [15] where the
two-componentKP equation was introduced and it was also noted that it reduces to a two-
dimensional nonlinear Schrödinger equation [21], the well known Davey–Stewartson (DS)
equation [4]. This motivates the alternative name ofDS system given in [16] to the two-
componentKP. Nevertheless, for historical reasons we retain the terminology introduced
in [15].

Previous results in this direction [12] derived from the following construction. Let
ψ(x, y, t) be an invertible transformation on a linear spaceV depending on the three
complex variablesx, y, t . Assumeψ satisfies the linear equations

ψy = ψxx ψt = ψxxx

then the linear transformation onV defined asF(x, y, t) = ψx(x, y, t) · ψ(x, y, t)−1

solves the potentialKP equation forF , (Ft − 1
4Fxxx − 3

2F
2
x )x = 3

4Fyy − 3
2[Fx, Fy ]. If

one wants to have a scalar potentialKP equation it is enough to impose the additional
restriction onF , F = A + e ⊗ α, whereA ∈ L(V ), e ∈ V are constant elements and
α(x, y, t) ∈ V ∗. That meansF be a rank-one operator modulo a constant operator. In that
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case the functionf (x, y, t) = 〈α(x, y, t), e〉 is a solution of the potentialKP equation,
(ft − 1

4fxxx − 3
2f

2
x )x = 3

4fyy . The new condition reflects onψ through the relation
ψx · ψ−1 = A + e ⊗ α or according toψx = Aψ + e ⊗ β once we defineβ = αψ .
For this linear functional we find the equationsβy = βxx , βt = βxxx which parametrize
the space of solutionsψ for which f = 〈β,ψ−1e〉 gives a solution of the potentialKP

equation.
Lettingψ depend on more spatial variablesx1, x2, . . . (here we shall be interested in two

variablesx1, x2) would result in multicomponentKP equations. One proceeds along the same
lines outlined above, but now with two coordinatesx1, x2, vectorse1, e2 and two constant
operatorsA1, A2, to get the two-componentKP equation from the flow defined by the heat
equationψt = 1ψ (the time t occupies the place of the variabley in the conventional
KP). In [13] there were obtained corresponding formulae for the two scalar functions
p12, p21, instead the singlef previously considered, that are of the formp12 = 〈β1, ψ

−1e2〉,
p21 = 〈β2, ψ

−e1〉, where we denote byβ1(x1, t) and β2(x2, t) two solutions of the heat
equation inV ∗. That construction lay on the algebraic relationsA1A2 = A2A1 = 0,
A1e2 = A2e1 = 0 which in turn gave heat equations for the vectorsβ1(x1, t), β2(x2, t)

which make up the solutionsp12 andp21. In fact the propagatorψ(x1, x2, t) ∈ GL(V ) was
of the formψ1(x1, t) + ψ(x2, t). For related formulae for the solutions obtained by these
methods see [6, 7, 9, 10, 11, 17, 18, 19, 20, 22].

This paper deals with the problem of determining under which conditions the free
propagator of the heat equation would continue to give solutions of the two-componentKP.
The answer is that one can replace the algebraic relations written above by the less restrictive
equationsA1A2 = A2A1, A1e2 = λ12e2, A2e1 = λ21e2 to keep thepij as solutions. Now,
however, one finds that the formulae expressing the newpij differs by the additive constants
λij from the previous ones and that the equations satisfied by theβi ’s is the heat equation
in two dimensions. Thusβ1 andβ2 now depend on the two variablesx1 and x2 and are
connected by the Dirac equation with mass. When this mass goes to zero one recovers
the preceding situation of separated variables in the propagatorψ and the vectorsβi . A
remarkable aspect of the new setting that deserves to be mentioned is the description of
the solutionspij by elementary equations of mathematical physics. These are the heat and
Klein–Gordon equation for the propagatorψ and the Dirac equation for the vectorsβi .
The appearance of mass has the effect of modifying the asymptotic behaviour of thepij
as it appears when examining dromion solutions of theDS equation, a real reduction of the
two-componentKP.

Besides the system considered until now, one can consider its reduction to a single
function that satisfies theDS equation we alluded to before. This amounts to the replacement
by real variables of the complex variablesx1, x2 and the substitution of the heat equation
by a Schr̈odinger equation. In that case we find that for the concrete solutions there are
linear constraints resulting in theDSI andDSII variants of the Davey–Stewartson equation.

The organization and contents of the paper are as follows. In section 2 we derive the
two-componentKP equation from the heat equation and appropriate linear constraints that
can be described by means of the Klein–Gordon equation and the Dirac equations. In
this context we obtain a Lax pair formulation. The construction of solutions is treated in
section 3 where we analyse some examples in the simplest cases. It ends with a treatment
of the reduction to the nonlinear Schrödinger (NLS) system. Finally, we study in section 4
the reduction problem and give sufficient conditions for the construction of solutions of the
DS equation. For theDSI reduction the line soliton as well as the multidromion solution are
recovered. Moreover we give new solutions, which we have called massive deformations
of dromions.
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2. The two-componentKP equations

In this section we shall study automorphismsψ(x1, x2, t) ∈ GL(V ) of some complex linear
spaceV that depend on the complex variablesx1, x2, t according to the heat equation

(∂t −1)ψ = 0, (2.1)

where1 := ∂2
1 + ∂2

2 is the Laplacian and∂i = ∂/∂xi . Then we can think ofψ as a
representation of the free propagator of the heat equation in the spaceV , the flow associated
with the Laplacian1.

Besides equation (2.1), which takes place in the Lie group GL(V ), we are interested
in the flows induced on the Lie algebraL(V ) of linear operators onV . To this end we
consider the right-derivatives

Fi := ∂iψ · ψ−1 (2.2)

for which the zero-curvature condition they satisfy (which holds by construction) can be
written as

∂2F1 + F1F2 = ∂1F2 + F2F1 =: Q, (2.3)

where we have also defined the operator functionQ(x1, x2, t) ∈ L(V ). Observe thatQ
admits also the expressionQ = ∂1∂2ψ · ψ−1, or ψ andQ are connected by a generalized
Klein–Gordon equation

(∂1∂2 −Q)ψ = 0.

It is easy to see that an automorphismψ(x1, x2, t) ∈ GL(V ) satisfies (2.1) if and only
if its right-derivativesFi(x1, x2, t) as defined in (2.2) are solutions of

∂tF1 = (∂2
1 − ∂2

2)F1 + 2(∂1F1 · F1 − F1 · ∂2F2)+ 2∂2Q

∂tF2 = −(∂2
1 − ∂2

2)F2 + 2(∂2F2 · F2 − F2 · ∂1F1)+ 2∂1Q.

The case of interest in connection with integrable systems appears when the operator
functionQ is a constant operator, a condition that will hold from now on.

Proposition 1. The two conditions for the automorphismψ

(∂t −1)ψ = 0 (2.4)

(∂1∂2 −Q)ψ = 0 (2.5)

whereQ ∈ L(V ) is a constant operator, are equivalent to the following equations for the
right-derivativesF1, F2 of ψ :

∂2F1 + F1F2 = Q (2.6)

∂1F2 + F2F1 = Q (2.7)

∂tF1 = (∂2
1 − ∂2

2)F1 + 2(∂1F1 · F1 − F1 · ∂2F2), (2.8)

∂tF2 = −(∂2
1 − ∂2

2)F2 + 2(∂2F2 · F2 − F2 · ∂1F1). (2.9)

Equations (2.6)–(2.9), as we shall show, can be considered as an operator extension
of the two-componentKP equations. In fact the two-componentKP equations arise if we
impose rank-one constraints on the right-derivativesFi of ψ .
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Definition 1. The rank-one constraints are defined by the equations:

∂iψ(x1, x2, t) = (Ai + ei ⊗ αi(x1, x2, t))ψ(x1, x2, t) i = 1, 2 (2.10)

whereAi ∈ L(V ) are constant operators subject to

A1A2 = A2A1 = Q (2.11)

with Q ∈ L(V ) a constant operator,ei ∈ V are constant vectors such that

A1e2 = λ12e1 A2e1 = λ21e2 λ12, λ21 ∈ C (2.12)

andαi(x1, x2, t) ∈ V ∗ are linear functionals depending onx1, x2, t .

We now introduce the functions in terms of which the two-componentKP equations are
defined.

Definition 2. The functionspij are given by

pij := λij + 〈αi, ej 〉 i 6= j (2.13)

and

p11 := −λ12λ21x2 + 〈α1, e1〉 (2.14)

p22 := −λ12λ21x1 + 〈α2, e2〉. (2.15)

Then equations (2.3) and (2.10) imply

∂2α1 + p12α2 + α1A2 = 0

∂1α2 + p21α1 + α2A1 = 0.
(2.16)

Upon contraction of (2.6) and (2.7) withe1 ande2 we deduce that ifψ is a solution of (2.5)
and (2.10), then the functionspij given in definition 2 are solutions of the equations

∂2p11 + p12p21 = 0 (2.17)

∂1p22 + p12p21 = 0 (2.18)

that imply the existence of a local potential, sayU , in terms of which

pii = ∂iU

fulfilling the relation

p12p21 + ∂1∂2U = 0.

The evolution for theαi is determined by (2.10) for the right-derivatives together with
(2.8), (2.9) and (2.6), (2.7) that give

∂tα1 = (∂2
1 − ∂2

2)α1 + 2∂1α1A1 + 2∂1p11α1 − 2p12∂2α2

∂tα2 = −(∂2
1 − ∂2

2)α2 + 2∂2α2A2 + 2∂2p22α2 − 2p21∂1α1.
(2.19)

Contracting them withe1 ande2 one finds the following:
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Proposition 2. If ψ(x1, x2, t) is a solution of (2.5), (2.4) with right-derivatives as in (2.10)
thenp12, p21 as given in definition 2 and the potentialU satisfy the system of equations

∂1∂2U + p12p21 = 0 (2.20)

∂tp12 − (∂2
1 − ∂2

2)p12 − 2p12(∂
2
1 − ∂2

2)U = 0 (2.21)

∂tp21 + (∂2
1 − ∂2

2)p21 + 2p21(∂
2
1 − ∂2

2)U = 0 . (2.22)

This system is that of the well known two-componentKP equations.
Therefore as a first result we have obtained a description of them by means of thefree

equations (2.4) and (2.5) for aψ subject to the linear constraints (2.10). The functions
pij satisfy the equations defining the Darboux coefficients or rotation coefficients for an
orthogonal system of curvilinear complex coordinates on a complex surface. The time
evolution, as given by the two-componentKP equations, represents an integrable deformation
of them [16].

Let us recall that the Lax equations [16] are one of the following linear systems (h̃

denoting the adjoint ofh) for the wavefunctionsh = (h1, h2)
t and h̃ = (h̃1, h̃2)

t :(
∂2 p12

p21 ∂1

)
h = 0

(
∂2 p21

p12 ∂1

)
h̃ = 0

(2.23)

(
∂t − ∂2

1 + ∂2
2 − 2∂2

1U 2p12∂2

2p21∂1 ∂t + ∂2
1 − ∂2

2 − 2∂2
2U

)
h = 0

(
∂t + ∂2

1 − ∂2
2 + 2∂2

1U −2p21∂2

−2p12∂1 ∂t − ∂2
1 + ∂2

2 + 2∂2
2U

)
h̃ = 0

(2.24)

and that the two-componentKP equations are a consequence of the compatibility conditions
on h or h̃. Here the coefficientshi give a diagonal metric of zero-curvatureh2

1dx2
1 +h2

2dx2
2,

and theirt-dependence provides an integrable deformation of that metric.
We have two different methods for constructing wavefunctions, depending on whether

we consider the vector spaceV (which uses the dressed propagatorψ and givesh̃), or its
dualV ∗ for the second method givingh, which relies on the functionalsα1 andα2 and also
on the vacuum propagatorψ0 constructed in terms of the operatorsA1 andA2 as

ψ0(x1, x2, t) := exp[A1x1 + A2x2 + (A2
1 + A2

2)t ] (2.25)

(i) The first method identifies̃hi with the vector functions taking values inV

h̃i := ψ−1ei (2.26)

that satisfy the (2.23) and (2.24), as follows from the relations

∂i(ψ
−1)+ ψ−1(Ai + ei ⊗ αi) = 0

∂t (ψ
−1)+

(∑
i=1,2

(ψ−1ei ⊗ ∂iαi − ∂iψ
−1(Ai + ei ⊗ αi)

)
= 0

when applied to the vectorse1, e2.
(ii) The linear functionals

hi := αiψ0 (2.27)

also satisfy equations (2.23) and (2.24), as one can deduce from equations (2.16).
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3. Construction of solutions

As we have seen, the two-componentKP equations can be solved in terms of a function
ψ(x1, x2, t) ∈ GL(V ). In order to solve the equations definingψ in proposition 1 together
with the constraints (2.10), we define the new linear functionalsβi := αiψ .

We shall show that such aβ ∈ C2 ⊗V ∗, with componentsβi , β := (β1, β2)
t , solves the

Dirac equation in a two-dimensional space-time of coordinatesx1, x2 andmetric given by

ds2 = 1
2

(
dx1 ⊗ dx2 + dx1 ⊗ dx2

)
. (3.1)

In this case the Dirac matricesγ1, γ2 satisfy

γ 2
i = 0 i = 1, 2 γ1γ2 + γ2γ1 = 1

and an action of this Clifford algebra onC2 is given by

γ1 =
(

0 1

0 0

)
γ2 =

(
0 0

1 0

)
.

We now introduce two masses, each which can be considered as the dual of the other,
as the following bilinear expressions in the gamma matrices:

mγ := diag(λ12, λ21) =
∑
i,j

γiγjλij

m̃γ := diag(λ21, λ12) =
∑
i,j

γiγjλji

and the corresponding Dirac operator is given by∂γ := γ1∂1 + γ2∂2.
Note that equation (2.10) can be written in the form

∂iψ = Aiψ + ei ⊗ βi (3.2)

so that

∂i∂jψ = Ai∂jψ + ei ⊗ ∂jβi.

In particular, wheni 6= j the above equation reads

Qψ = A1∂2ψ + e1 ⊗ ∂2β1

Qψ = A2∂1ψ + e2 ⊗ ∂1β2

which, bearing in mind definition 1, results in the Dirac equation for the spinor coefficients
βi :

∂1β2 + λ21β1 = 0

∂2β1 + λ12β2 = 0

equations that can be condensed to

(∂γ + m̃γ )β = 0.

The deformation equation forβ follows from the∂t -derivative of (3.2) and the evolution
(2.4) ofψ from which we deduce the relation

(∂i − Ai)1ψ = ei ⊗ ∂tβi

that gives(∂t −1)β = 0 once we replace(∂i − Ai)ψ by ei ⊗ βi according to (2.10).
Observe in particular thatβ is a solution of the Klein–Gordon equation

(∂1∂2 − λ12λ21)β = 0.
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In order to constructψ we select the vector functions

bi := ψ−1
0 ei

with ψ0 given in (2.25). The vector functionb := (b1, b2)
t with values inC2 ⊗ V satisfies

(∂γ +mγ )b = 0 (3.3)

(∂t +1)b = 0 (3.4)

but these two equations do not characterize the functionsbi = ψ−1
0 ei completely. We are

now in a position to describeψ in terms ofβ.

Proposition 3. Let βi(x1, x2, t) ∈ V ∗, i = 1, 2, be functions ofx1, x2, t taking values in
V ∗, such thatβ = (β1, β2)

t is a solution of

(∂γ + m̃γ )β = 0

(∂t −1)β = 0.

A solutionψ(x1, x2, t) to (2.5), (2.4) and (2.10) can be represented as

ψ = ψ0 · ϕ
whereϕ(x1, x2, t) is determined by the system of compatible equations

∂iϕ = bi ⊗ βi i = 1, 2 (3.5)

∂tϕ =
∑
i=1,2

[
bi ⊗ ∂iβi − ∂ibi ⊗ βi

]
. (3.6)

Theα’s are defined by the relationsαi = βiψ .

Proof. Just rewrite the equations forψ in terms ofβ. �

Thus, given an initial point(x0
1, x

0
2, t0), whereϕ takes the valueϕ0, and an appropriate

path γ : [s0, s1] → C3, γ (s) = (x1(s), x2(s), t (s)), connecting this point with(x1, x2, t),
the functionϕ can be expressed as

ϕ(x1, x2, t) = ϕ0 +
∫ s1

s0

ds

[
dx1

ds
(s)(b1 ⊗ β1)(γ (s))+ dx2

ds
(s)(b2 ⊗ β2)(γ (s))

+ dt

ds
(s)

∑
i=1,2

(
bi ⊗ ∂iβi − ∂ibi ⊗ βi

)
(γ (s))

]
. (3.7)

We can choose the pathγ from (x0
1, x

0
2, t0) to (x1, x2, t) by first connecting(x0

1, x
0
2, t0) to

(x0
1, x

0
2, t) by a straight line, and then from(x0

1, x
0
2, t) to (x1, x2, t) by any path keepingt

unchanged. Ifbi and βi , i = 1, 2 and their derivatives vanish at(x0
1, x

0
2) for all t , then

equation (3.7) simplifies to

ϕ(x1, x2, t) = ϕ0 +
∫ s1

s0

ds

[
dx1

ds
(s)(b1 ⊗ β1)(γ (s), t)+ dx2

ds
(s)(b2 ⊗ β2)(γ (s), t)

]
a path integral in the plane(x1, x2) with γ (s) = (x1(s), x2(s)). In that case, the path integral
can be expressed in terms of the primitives∂−1

i = ∫ xi
x0
i

dxi that commute with∂i . In this
manner one recovers the approach adopted in [13], whereϕ was written as

ϕ = C + ∂−1
1 (b1 ⊗ β1)+ ∂−1

2 (b2 ⊗ β2)
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for the λij = 0 case.
We define the operators

ξij := ψ + ej ⊗ βi − ej ⊗ ηjψ

ζij := ϕ + bj ⊗ βi − bj ⊗ δjϕ

where theηj , δj (x1, x2, t) ∈ V ∗ are linear functionals such that

〈ηj , ej 〉 = 〈δj , bj 〉 = 1 j = 1, 2.

Note that for a givenηj we can takeδj = ηj ψ0 and in that case we have the relations
ξij = ψ0 ζij .

We can now state the main result of this paper. The proof of it follows the ideas of
[13, theorem 2].

Theorem 1. If ϕ, as given by (3.5) and (3.6), has a determinant then the functions

U = −λ12λ21x1x2 + ln detϕ

p12 = λ12 + 〈β1, ϕ
−1b2〉 = λ12 + detξ12

detψ
= λ12 + detζ12

detϕ

p21 = λ21 + 〈β2, ϕ
−1b1〉 = λ21 + detξ21

detψ
= λ21 + detζ21

detϕ

represent a solution of (2.20)–(2.22). Moreover, the functions

h̃i = ϕ−1bi

hi = βiϕ
−1

satisfy equations (2.23) and (2.24), and their components determine the associated
wavefunctions.

Note that with the characterization given forp12 andp21 the computation of the inverse
of ϕ is avoided by the use of determinants. This is an advantage of the determinant-type
expressions.

Clearly, the two-componentKP equations are invariant under global phase shifts:

p12 → exp(iθ)p12

p21 → exp(−iθ)p21

U → U

with θ ∈ [0, 2π). To lift this action up to the linear data we define

β1 → exp(iθ/2)β1

β2 → exp(−iθ/2)β2

e1 → exp(−iθ/2)e1

e2 → exp(iθ/2)e2
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which preserve the Dirac equation for theβ ’s and theb’s if and only if theλ’s transform
according to

λ12 → exp(iθ)λ12

λ21 → exp(−iθ)λ21.

The equations describing the time evolution ofβi andbi are obviously preserved. In this
transformationA1 andA2 remain invariant, and as a consequence of (3.5) and (3.6) the
automorphismϕ do also remains invariant. One interesting consequence of this invariance
is that we can choose the phase of one of theλ’s arbitrarily, for example we may choose
λ12 ∈ R without loss of generality.

As an example we considerV = C, suppose thate1, e2 ∈ C are non-zero so that we
can introduce the parameterk = e1/e2, in terms of which the operatorsA1, A2, which now
are complex numbers, can be written asA1 = λ12k andA2 = λ21k

−1. Then we have

b(x1, x2, t) = e exp
[ − (λ12kx1 + λ21k

−1x2 + (λ2
12k

2 + λ2
21k

−2)t)
]

β(x1, x2, t) = β0 exp
[ − (λ21lx1 + λ12l

−1x2 − (λ2
21l

2 + λ2
12l

−2)t)
]

where

e =
(
e1

e2

)
β0 =

(
c1

c2

)
with ci ∈ C× and l = c1/c2. We have taken the linear functionalsβi to be of exponential
type, although the general expression will be any linear superposition of exponentials.

We denote byE(x1, x2, t) the function

E(x1, x2, t) := exp
[
(λ12k + λ21l)x1 + (λ21k

−1 + λ12l
−1)x2 + (λ2

12(k
2 − l−2)

+λ2
21(k

−2 − l2))t
]

in terms of which

ϕ(x1, x2, t) = C + A

E(x1, x2, t)

whereC ∈ C is an arbitrary constant and the amplitudeA ∈ C satisfies

−A = e1c1

λ12k + λ21l
= e2c2

λ21k−1 + λ12l−1
.

The solution associated with the two-componentKP equations is

p12(x1, x2, t) = λ12 + e1c2

A+ CE(x1, x2, t)

p21(x1, x2, t) = λ21 + e2c1

A+ CE(x1, x2, t)

U(x1, x2, t) = −λ12λ21x1x2 + ln(C + A/E(x1, x2, t))

and as wavefunctions we can chooseh̃ = 1/(C + AE)b or h = 1/(C + AE)β.
As a second illustration, we consider the caseV = C2. If e1 and e2 are independent,

there exists a basis where the general expression for the matricesA1 andA2 is

A1 =
(
q1 −λ12k

2

λ21 0

)

A2 =
(

0 λ12

−λ21k
−2 q2

)
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whereq1, q2 ∈ C, k ∈ C× satisfyq1 = k2q2. For the vectorse1 ande2 we have

e1 =
(
a1

0

)
e2 =

(
0

a2

)
with a1, a2 ∈ C× such thatk2 = −a1/a2. For the computation ofψ0 it is useful to determine
the eigenvalues of the matrix

M(x1, x2, t) := A1x1 + A2x2 + (A2
1 + A2

2)t.

The eigenvaluesλ± are

λ± = 1
2

(
TrM ±

√
(TrM)2 − 4 detM

)
a formula that can be written as

λ± = ζ±q1x1(t)+ ζ∓q2x2(t)− ζ+ζ−(q2
1 − q2

2)t

where we denote

xi(t) := xi + qit

and

ζ :=
√

1

4
− λ12λ21

q1q2

ζ± := 1
2 ± ζ.

Once the eigenvalues are known it is easy to findψ0 = expM, recalling that

expM = M − λ−
λ+ − λ−

eλ+ − M − λ+
λ+ − λ−

eλ− .

The final expression is

ψ0 = 1

2ζ

(
ζ+eλ+ − ζ−eλ− − λ12

q2
(eλ+ − eλ−)

λ21
q1
(eλ+ − eλ−) −ζ−eλ+ + ζ+eλ−

)
and we get the formulae

b1 = a1

2ζ

(
ζ+e−λ+ − ζ−e−λ−

λ21
q1
(e−λ+ − e−λ−)

)

b2 = a2

2ζ

( − λ12
q2
(e−λ+ − e−λ−)

−ζ−e−λ+ + ζ+e−λ−

)
.

For theσ ’s we can consider, in particular, exponential expressions as those just written.
Thus, letr1, r2, l, c1, c2 ∈ C× be such thatr1/r2 = l andc1/c2 = l. As before, we introduce

ξ :=
√

1

4
− λ12λ21

r1r2

ξ± := 1
2 ± ξ

µ± := ξ±r1(x1 − r1t)+ ξ∓r2(x2 − r2t)+ ξ+ξ−(r2
1 + r2

2)t
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in terms of which we write

β1 = c1

2ξ
( ξ+e−µ+ − ξ−e−µ− , λ12

r1
(e−µ+ − e−µ−) )H

β2 = c2

2ξ
(− λ21

r2
(e−µ+ − e−µ−), −ξ−e−µ+ + ξ+e−µ− )H

whereH ∈ GL(V ) is an invertible linear operator.
Formulae forϕ and the solutions to the two-componentKP equations readily follow

from the preceding computations. In the next section a detailed account of this particular
example will be given for theDSI reduction.

These two examples illustrate the method of construction in very simple cases. However,
using theorem 1 and proposition 3 we are able to construct large families of solutions of
the two-componentKP equations. In the rest of this section we shall concentrate on two
particular examples where the spaceV is chosen to be infinite-dimensional, in which case
equations (3.3) and (3.4) will suffice to describe the solution space.

3.1. The Klein–Gordon equation

We shall deal here with a non-zero mass Klein–Gordon equation. We first introduce
the objectss(x1, x2, t) ∈ C2 ⊗ W , σ(x1, x2, t) ∈ C2 ⊗ W ∗ and8(x1, x2, t) ∈ GL(W),
8ij (x1, x2, t) ∈ L(W) in terms of which our solution is constructed.

(i) Let W be a complex linear space; we shall denote bys1 and s2 two vector functions
such that the spinors = (s1, s2)

t solves

(∂γ +mγ )s = 0

(∂t +1)s = 0

with detmγ = λ12λ21 6= 0.
(ii) We define linear functionalsσi(x1, x2, t) ∈ W ∗, i = 1, 2 such thatσ = (σ1, σ2)

t is a
solution of

(∂γ + m̃γ )σ = 0

(∂t −1)σ = 0.

(iii) Let 8(x1, x2, t) be a solution of

∂i8 = si ⊗ σi i = 1, 2

∂t8 =
∑
i=1,2

[si ⊗ ∂iσi − ∂isi ⊗ σi ]

and we define

8ij := 8+ sj ⊗ (σi − ςj8).

with ςi(x1, x2, t) ∈ W ∗ such that〈ςi, si〉 = 1.

According to the preceding definitions we present a scheme for the construction of
solutions to the two-componentKP equations in the caseλ12λ21 6= 0.
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Theorem 2. Let s, σ,8 and8ij be given as above. Then the formulae

p12 = λ12 + 〈σ1,8
−1s2〉 = λ12 + det812

det8

p21 = λ21 + 〈σ2,8
−1s1〉 = λ21 + det821

det8

U = ln det8− λ12λ21x1x2

provide a solution of (2.20)–(2.22). Moreover, the functions

h̃i = 8−1si i = 1, 2

hi = σi8
−1 i = 1, 2

satisfy the corresponding (2.23) and (2.24) determining their components and hence their
associated wavefunctions.

Proof. We choose the vector spaceV as the space of bi-infinite sequences in a complex
linear spaceW , thusV = `Z(W) is the set of vectors

`Z(W) := {{wn}n∈Z : wn ∈ W}
.

The shift operator3 acts onV according to the formula

3{wn}n∈Z = {wn+1}n∈Z

which is an invertible operator with inverse3−1 given by

3−1{wn}n∈Z = {wn−1}n∈Z.

TakeA1 = λ123, A2 = λ213
−1, e1 = e and e2 = 3−1e, wheree 6= 0 is some constant

vector inV .
From the definition of theb’s we obtain the recurrence relations

∂1bi,n + λ12bi,n+1 = 0

∂2bi,n + λ21bi,n−1 = 0

so that, ifλ12λ21 6= 0, we can write

bi = {· · · , λ−2
21 ∂

2
2si

↓
n=−2

,−λ−1
21 ∂2si
↓

n=−1

, si
↓
n=0

,−λ−1
12 ∂1si
↓
n=1

, λ−2
12 ∂

2
1si

↓
n=2

, · · ·}

where si := bi,0. As b satisfies (3.3) and (3.4) so do all its terms; this happens for
s = (s1, s2)

t in particular.
For theβ ’s we choose

βi = {· · · , 0, σi
↓
n=0

, 0, · · ·}

with σi functionals inW ∗ subject to the same equations as theβi .
These choices give the results stated in the theorem. �
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Observe that in this theorem it is necessary thatλ12λ21 6= 0; in the next subsection we
shall give a construction where this is not needed.

3.2. The Dirac equation

One can write more explicit expressions for the solutions when restrictions on the function
ψ are imposed. In this direction, we shall analyse what these solutions are whenψ satisfies
a Dirac equation and consequently the Klein–Gordon equation (2.5). We first give some
basic results regarding the representation of the Clifford algebra associated with the metric
introduced in (3.1).

The Clifford algebra associated with the metric ds2 = gijdxi ⊗ dxj , defined in (3.1),
generated byγ1, γ2 through the anticommutation relations

{γi, γj } = 2gij

can be represented in a linear spaceV by operators01, 02. We introduce this notation
in order to distinguish between these gamma matrices and those corresponding to the
representation inC2. It can be easily shown in that case that the spaceV decomposes
as a direct sum

V = V1 ⊕ V2

whereV1
∼= V2 = V̂ . The associated resolution of the identity is given by

id = P1 + P2

with the projectionsPi ,
(
Pi

)2 = Pi andP1P2 = P2P1 = 0, defined as

P1 := 0102, P2 := 0201.

Moreover, sinceVi = 0iV it follows that every representation is of the form

01 =
(

0 1

0 0

)
02 =

(
0 0

1 0

)
where the matrix form is referred to the linear splitting ofV into isomorphic subspacesV1

andV2.
Given λ12, λ21 ∈ C we define the operator̃m0 ∈ L(V )

m̃0 := λ21P1 + λ12P2.

The Dirac operator associated with this particular representation of the Clifford algebra
reads

∂0 := 01∂1 + 02∂2

and the Dirac equation

(∂0 − m̃0)ψ = 0 (3.8)

for the automorphismψ(x1, x2, t) ∈ GL(V ) implies the Klein–Gordon equation

(∂1∂2 − λ12λ21)ψ = 0.

The operatorQ = λ12λ21 is now proportional to the identity and equation (3.8) can be
written in terms of the right derivativesF1, F2 of ψ as

01(F1 − 02λ21)+ 02(F2 − 01λ12) = 0. (3.9)
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To treat the constraints (2.10) in the same fashion, we first observe that the operators
A1, A2 in addition to (2.11) must be consistent with (3.9). One easily deduces thatA1, A2

satisfy the constraints given by (2.11) and (3.9) if they have the form

A1 = λ2102 + q1P1 − λ12k
201

A2 = λ1201 + q2P2 − λ21k
−202

whereqi ∈ L(V̂ ), i = 1, 2, andk2 ∈ GL(V̂ ), a linear invertible operator, satisfy

q1 − k2q2 = 0

and the vectorse1, e2 are connected by

e1 − k201e2 = 0.

One can see that with this choice for theAi, ei , i = 1, 2, (3.8) holds by virtue of the
constraints (2.10), which can be solved according to proposition 1.

Note that in addition to equation (3.3) the vector functionsbi are also solution of

(∂0 + m̃0)bi = 0 i = 1, 2 (3.10)

that follows from the particular form of the operatorsA1 andA2 when dealing with the
Dirac equation forψ . However, equations (3.3) and (3.10) imply, with respect to the linear
splitting V = V1 ⊕ V2, that theb’s can be written as follows:

b1 = b̂1 + λ21B (3.11)

b2 = λ12B + b̂2. (3.12)

and this makes the Dirac equations (3.3) and (3.10) equivalent conditions. Thatei ∈ Vi ,
together with the definition of thebi ’s, has as consequence the initial value condition

B(0) = 0. (3.13)

The conditions that we have been considering so far do not completely characterize
the bi ’s which are of exponential type by definition. As before, a particularly interesting
solution arises in an infinite-dimensional linear spaceV . In that case the vectorsbi are
replaced by vector functions characterized uniquely by the equations written above.

In the present case theorem 2 can be formulated as follows. Let01, 02 be a
representation defined by the metric (3.1) in the complex linear spaceW andW = Ŵ ⊕ Ŵ

the associated decomposition. Lets1 ands2 be two vector functions ofx1, x2, t with values
in W such that with respect to the linear splittingW = Ŵ ⊕ Ŵ can be written as

s1 = ŝ1 + λ21S (3.14)

s2 = λ12S + ŝ2 (3.15)

with S such that

S(0) = 0.

Theorem 3. Let s, σ,8,8ij denote the elements appearing in theorem 2 withs andW as
above where theλij are arbitrary numbers. Then the formulae of theorem 2 remain true.



The Dirac equation and integrable systems ofKP type 655

Proof. We take

V̂ = `N(Ŵ ) := {{wn}n>0 : wn ∈ Ŵ}
as the space of sequences inŴ . Choosek2 = 1 andq1 = 3, 3 being the shift operator in
`N(Ŵ ), so thatq2 = 3.

With this choice we study the vectorsb1 and b2. Due to equations (3.11) and (3.12),
with respect to the splittingV = `N(Ŵ )⊕ `N(Ŵ ), we can write

b1 = {
b̂1,n

}
n>0 + λ21

{
Bn

}
n>0

b2 = λ12
{
Bn

}
n>0 + {

b̂2,n
}
n>0.

The definition ofbi = ψ−1
0 ei gives the recurrence relations

b̂1,n+1 = −∂1b̂1,n + λ12λ21Bn

b̂2,n+1 = −∂2b̂2,n + λ12λ21Bn

λ12Bn+1 = λ12(−∂1Bn + b̂2,n)

λ21Bn+1 = λ21(−∂2Bn + b̂1,n)

together with equations (3.3) and (3.4) forb̂1,0 +B0 andB0 + b̂2,0. The conditionB0(0) = 0
follows from B(0) = 0. Defineŝi := b̂i,0 andS := B0. From the definition ofbi one also
deduces the relations

∂1b̂2,n + λ12λ21Bn = 0

∂2b̂1,n + λ12λ21Bn = 0

λ21(∂1Bn + b̂1,n) = 0

λ12(∂2Bn + b̂2,n) = 0.

Observe that whenλ12λ21 6= 0 we can write a symmetric recurrence relation for theB ’s:

Bn+1 = b̂1,n + b̂2,n

but this equality fails whenλ12λ21 = 0. In this case, if one of theλ’s is not zero, we could
use forB the remaining non-trivial recurrence relation. If both of theλ are zero,B = 0.

For theβ ’s choose

βi = {
σi, 0, 0, . . .

}
whereσi(x1, x2, t) is a linear functional inW ∗ such thatσ is a solution to the Dirac equation
and(∂t −1)σ = 0.

Now, recalling equations (3.5) and (3.6), a proper choice of the integration constant
allows us to replace the infinite-dimensionalϕ by 8 in order to get the desired result.

Taking into account (2.26) and (2.27), the form of the wavefunctions follows in a similar
manner. �



656 F Guil and M Mañas

Note that whenλ12 = λ21 = 0 the theorem above reduces to [13, theorem 3]. If this
is the caseS = 0 and si depends onxi, t and takes values inWi . The Dirac equation
disappears and only the deformation equations remains forσi as well. Therefore, theorem 3
can be understood as amassivedeformation of thezero-masssolutions given in [13]. But
this algebraicmassshould not be confused with the energy or mass of the solutions to the
two-componentKP equations.

Observe that the Dirac equation fors, in spinor components, reads

∂2ŝ1 + λ12λ21S = 0 (3.16)

∂1ŝ2 + λ12λ21S = 0 (3.17)

λ21(∂1S + ŝ1) = 0 (3.18)

λ12(∂2S + ŝ2) = 0. (3.19)

If λ12λ21 6= 0 thenŝ1 and ŝ2 derive from the potential−S, whereS is a solution of

(∂1∂2 − λ12λ21)S = 0. (3.20)

Thuss is parametrized functionally in terms of an arbitrary solutionS of the Klein–Gordon
equation (3.20) withS(0) = 0. If λ12λ21 = 0 then ŝ1 is x2-independent and̂s2 does not
depend onx1. Moreover, if for example,λ12 6= 0, thenS = S1(x1, t) + S2(x2, t) and
ŝ2(x2, t) = ∂2S2(x2, t) defined by (3.19) in terms ofS.

The reduction to the nonlinear Schr¨odinger system.As an illustration of our construction
we shall examine briefly what the solutions are for the reduction to the nonlinear Schrödinger
(NLS) equation.

Given an arbitrary vector fieldX = a1∂1 + a2∂2 one can ask whetherXp12 = Xp21 = 0
consistently with the time evolution, so that we have a one-dimensional reduction of the
two-component system. In our scheme this means thatXαi = 0, i = 1, 2. Taking into
account the rank-one constraints forψ , this is equivalent to

Xψ = ψK

or

Xϕ + (a1A1 + a2A2)ϕ = ϕK

for someK ∈ L(V ). The operatorK is determined by the initial conditions

K = ϕ−1
0 (a1b1,0 ⊗ β1,0 + a2b2,0 ⊗ β2,0)+ ϕ−1

0 (a1A1 + a2A2)ϕ0

and theβ ’s are now subject to

Xβi = βiK.

One can show that there exist independent variablesY and T , the former being a
linear function ofx1 and x2 and the latter a linear function oft , and dependent variables
P12 := exp(3t)p12, P21 := exp(−3t)p21, where3 is an appropriate constant, such that
the two-componentKP equations reduce to the well knownAKNS–ZS system or nonlinear
Schr̈odinger (NLS) system:

∂T P12 − ∂2
YP12 − 2P 2

12P21 = 0

∂T P21 + ∂2
YP21 + 2P 2

21P12 = 0.
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4. The Davey–Stewartson equations

We now slightly modify our deformation to the free Schrödinger equation

i∂tψ = (∂2
1 − ∂2

2)ψ

so that the two-componentKP equations read

∂1∂2U + p12p21 = 0

i∂tp12 −1p12 − 2p121U = 0

i∂tp21 +1p21 + 2p211U = 0.

Now, theorem 3 holds ifβi is a solution of

(i∂t − ∂2
1 + ∂2

2)βi = 0 i = 1, 2

andϕ satisfies the modified deformation equation

i∂tϕ = b1 ⊗ ∂1β1 − ∂1b1 ⊗ β1 − b2 ⊗ ∂2β2 + ∂2b2 ⊗ β2.

Theorems 2 and 3 require thatsi andσi , i = 1, 2 be solutions of

(i∂t + ∂2
1 − ∂2

2)si = 0

(i∂t − ∂2
1 + ∂2

2)σi = 0

for i = 1, 2, and also that8 satisfies the deformation

i∂t8 = s1 ⊗ ∂1σ1 − ∂1s1 ⊗ σ1 − s2 ⊗ ∂2σ2 + ∂2s2 ⊗ σ2.

4.1. The Davey–Stewartson I equations

The DSI reduction appears whenx1 = ξ, x2 = η ∈ R and

p12 = εp̄21 =: p ε = ±1 ∇U(ξ, η, t) ∈ R2

(the bar denotes complex conjugate) which implies the differential equations

∂ξ ∂ηU + ε|p|2 = 0 (4.1)

i∂tp −1p − 2p1U = 0. (4.2)

These equations are just theDSI in its defocusing,ε = 1, and focusing,ε = −1, cases.
The problem to tackle here is which dataAi, βi are suitable for this reduction. If the

complex linear spaceV is furnished with a scalar product and† : V → V ∗ denotes the
standard antilinear isomorphism generated by this scalar product, a possible solution to this
question is as follows.

Proposition 4. If

λ := λ12 = ελ̄21

β1 = b
†
1H

β2 = εb
†
2H

ϕ
†
0H = Hϕ0
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where H = H † is a Hermitian operator andϕ0 denotes the value ofϕ(ξ, η, t) at
ξ = ξ0, η = η0, t = t0, then the functionsp12, p21 andU satisfy

p12 = εp̄21 ∇U(ξ, η, t) ∈ R2.

Proof. Observe thatβ = (β1, β2)
t is a solution of(∂γ +m̃γ )β = 0 and(i∂t−∂2

ξ +∂2
η )β = 0

becauseb = (b1, b2)
t is a solution of(∂γ +mγ )b = 0 and(i∂t + ∂2

ξ − ∂2
η )b = 0.

From definition 2 we have

p12 = λ12 + 〈b†
1, Hϕ

−1b2〉

p21 = λ21 + ε〈b†
2, Hϕ

−1b1〉
so that

εp̄21 = λ12 + 〈
b

†
1,

(
ϕ†)−1

Hb2
〉
. (4.3)

From the differential equations definingϕ, which read

∂ξϕ = b1 ⊗ b
†
1H

∂ηϕ = εb2 ⊗ b
†
2H

i∂tϕ = [
b1 ⊗ ∂ξb

†
1 − ∂ξb1 ⊗ b

†
1 − ε(b2 ⊗ ∂ηb

†
2 − ∂ηb2 ⊗ b

†
2)

]
H

one can see that

∂ξ
(
ϕ†H −Hϕ

) = 0 (4.4)

∂η
(
ϕ†H −Hϕ

) = 0 (4.5)

∂t
(
ϕ†H −Hϕ

) = 0. (4.6)

Therefore, if the initial conditionϕ0 is such that

ϕ
†
0H −Hϕ0 = 0

then this condition can be extended, by means of equations (4.4)–(4.6) for everyξ, η, t , so
that

ϕ†H −Hϕ = 0

Then equation (4.3) impliesεp̄21 = p12.
A similar argument ensures thatpii = p̄ii , so that∇U takes values inR2. �

Let us consider the reduction toDSI of the simple example considered previously with
V = C. The result is that if we introduce the function

E(ξ, η, t) := exp
(
2λ cosα

[
kξ(t)+ εk−1η(t)

])
where

ξ(t) := ξ + 2λk sinα t

η(t) := η − 2ελk−1 sinα t
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then

p(ξ, η, t) = λ+ kBH

CE(ξ, η, t)− kB/(λ(eα + εe−α))

wherek, B > 0 are positive numbers,C,H, λ ∈ R are real numbers andα ∈ [0, 2π), is
the amplitude for a solution of theDSI equations which happens to be a one line soliton
solution ofDSI [21].

The reduction, in the defocusing case, of theV = C2 example follows. Givenq1, q2 < 0
we define

Q :=
√

1

4
− |λ|2
q1q2

and we chooseq1, q2 such that 06 Q 6 1
2, that isq1q2 > 4|λ|2. It proves to be convenient

to introduceQ± := 1
2 ±Q. We also defineξ(t) := ξ − iq1t andη(t) := η + iq2t , and the

corresponding eigenvalues readsλ± := Q±q1ξ(t) + Q∓q2η(t) + iQ+Q−(q2
1 − q2

2)t . The
vectorsb1 andb2 in terms of which the solution is constructed are

b1 = q1

2Q

(
Q+ exp(−λ+)−Q− exp(−λ−)

λ̄
q1
(exp(−λ+)− exp(−λ−))

)

b2 = q2

2Q

( λ
q2
(exp(−λ+)− exp(−λ−))

Q− exp(−λ+)−Q+ exp(−λ−)

)
.

The associatedβ ’s that give rise to theDSI reduction are found by using the prescription
βi = b

†
i H , for i = 1, 2, with H † = H .

The fundamental matrix isϕ = id +φH , whereϕ0 = id, now (ξ0, η0) = −∞ so thatbi
goes to zero at that initial point. Here the Hermitian matrixφ = (φij ) is defined by

φ11 := − q1

8Q2
exp(−(q1ξ + q2η))[Q+ exp(−2Q(q1ξ − q2η))+Q− exp(2Q(q1ξ − q2η))

−4Q+Q− cos(2Q(q2
1 + q2

2)t)]

φ22 := − q2

8Q2
exp(−(q1ξ + q2η))[Q− exp(−2Q(q1ξ − q2η))+Q+ exp(2Q(q1ξ − q2η))

−4Q+Q− cos(2Q(q2
1 + q2

2)t)]

φ12 := − λ

8Q2
exp(−(q1ξ + q2η))[exp(−2Q(q1ξ − q2η))+ exp(2Q(q1ξ − q2η))

−2(cos(2Q(q2
1 + q2

2)t)+ 2iQ sin((2Q(q2
1 + q2

2)t))].

The principal tau function is detϕ, which in our case reads

detϕ = 1 + Tr(φH)+ detH detφ.

One can check that detφ = q1q2 exp(−2(q1ξ + q2η))/4, and ifH = (Hij ) we can write

detϕ = 1 − 1

8Q2
exp(−(q1ξ + q2η))

[
6+ exp(−2Q(q1ξ − q2η))

6− exp(2Q(q1ξ − q2η))−60(t)
] + q1q2 detH

4
exp(−2(q1ξ + q2η))
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where

6+ := H11q1Q+ +H22q2Q− + 2λRe(H21)

6− := H11q1Q− +H22q2Q+ + 2λRe(H21)

60(t) := 4
[
(H11q1 +H22q2)Q+Q− cos(2Q(q2

1 + q2
2)t)

+λRe
{
H21(cos(2Q(q2

1 + q2
2)t)+ 2iQ sin(2Q(q2

1 + q2
2)t))

}]
.

This expression allows us to find the potentialU through the formulaU = −|λ|2ξη +
ln detϕ. Moreover, the modulus of the amplitude|p| is determined by|p|2 = |λ|2 −
∂ξ ∂η ln detϕ. Whenλ = 0 one recovers the general formulae for the one-dromion solution
first found in [3], an exponential localized solution in all directions. As|λ|2 goes from 0
to q1q2/4 one finds a one-complex-parameter deformation of the one-dromion solution of
DSI. Motivated by the mass character of the parameterλ in the Klein–Gordon and Dirac
equations in which it appears, we call themmassive deformations. Although the solution
does not move in the plane a general constant velocity can be assigned by performing a
Galilean transformation. The resulting velocity is connected with the imaginary part of the
new q ’s.

The term60 gives a time dependence, so that|p| has a pulsation with period given by
T = π/(Q(q2

1 + q2
2)). This breather character for|p| disappears when60 = 0, for example

in the one-dromion solution.
From the form of detϕ, where four independent exponentials appear generically, one

readily concludes that this solution cannot be a two line-soliton solution of theDSI equation
[21]. However, the representation withMathematicaof |p| strongly suggests a nonlinear
superposition of a one-dromion with a two-line soliton, with the dromion living in the
cross of the line solitons. The solution remains bounded, but now the asymptotic values at
infinity are non-zero, depending these asymptotics on the value ofλ. The two-line soliton
disappears whenλ = 0 and the dromion almost disappears when the massλ is large enough.
Moreover,Mathematicashows that only the angle of the two lines defined by1U , which
coincide with those defined by the two-line soliton, depend asymptotically onλ.

A more detailed study of this solution and its generalizations to theN -massive dromion
solutions seems to be of interest besides the study of the standard line solitons. TheN -
dromion solution [14] appears whenV = C2N andλ = 0, so massive deformations appears
by allowing λ to be distinct from 0.

Proposition 4 allows us to apply theorems 2 and 3 to theDSI equation. As before we
introduce the functionss(ξ, η, t) ∈ C2 ⊗W , 8(ξ, η, t) ∈ GL(W) and8̃(ξ, η, t) in terms of
which our solutions are constructed.

(i) Let W be a complex linear space and define two vector functionss1, s2 solutions of

(∂γ +mγ )s = 0

(i∂t + ∂2
ξ − ∂2

η )s = 0

with s = (s1, s2)
t andmγ = diag(λ, ελ̄). We shall distinguish between two different

types of data:

(a) Type I. In this caseλ 6= 0.
(b) Type II. In this caseλ ∈ C can be chosen equal to zero andW must be chosen of

the formW = Ŵ⊕Ŵ , whereŴ is a complex linear space, and the vector functions
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s1 ands2 decompose with respect to the linear splittingW = Ŵ ⊕ Ŵ as

s1 = ŝ1 + ελ̄S

s2 = λS + ŝ2

with S satisfying

S(0) = 0.

(ii) Let 8(ξ, η, t) be a solution of

∂ξ8 = s1 ⊗ s
†
1H

∂η8 = εs2 ⊗ s
†
2H

i∂t8 = [
s1 ⊗ ∂ξ s

†
1 − ∂ξ s1 ⊗ s

†
1 − ε(s2 ⊗ ∂ηs

†
2 − ∂ηs2 ⊗ s

†
2)

]
H

whereH is a Hermitian operator, for which the initial condition80 satisfies

8
†
0H −H80 = 0

we define

8̃ := 8+ s2 ⊗ (s
†
1H − ς8).

with ς(ξ, η, t) ∈ W ∗ such that〈ς, s2〉 = 1.

Our construction of solutions can be stated in terms of these functions.

Theorem 4. Let s, 8 and8̃ be as just described, withs either of type I or type II, then

p = λ+ 〈s†1, H8−1s2〉 = λ+ det8̃

det8

U = ln det8− ε|λ|2ξη

are a solution of theDSI equations given by (4.1) and (4.2). The vector functions

h̃i = 8−1si

satisfy the corresponding equations (2.23) and (2.24) and their components give the
associated wavefunctions.

Observe that for the adjoint wavefunction we havehi = h̃
†
iH , which follows from the

particular form of theσ ’s and the relationH8−1 = (
8†)−1

H . We also remark that, because
the global gauge invariance,λ can be chosen to be real without loss of generality.

The type II case is amassiveextension of [13, theorem 5] where the caseλ = 0 was
considered. Recall that thezero-masscase [13, theorem 5] was first discovered in [7] by
spectral means following the inverse spectral analysis of [5] forDSI; it also appears in [11],
where it was independently derived by direct methods. The caseλ = 0 contains the well
known dromion [3, 14] and gausson [7] solutions ofDSI.
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4.2. TheDSII reduction

For theDSII case we takēx1 = x2, ∇U = (Ux, Uy) ∈ R2 wherex1 = z = x + iy, x, y ∈ R,
andεp̄21 = p12 = p. The equations are now

1U + 2ε|p|2 = 0 (4.7)

1
2i∂tp − (∂2

x − ∂2
y )p − 2p(∂2

x − ∂2
y )U = 0. (4.8)

Equations (4.1) and (4.8) constitute theDSII in its defocusing (ε = 1) and focusing
(ε = −1) cases. Here we use the notation∂ = ∂z and ∂̄ = ∂z̄.

Proposition 5. If

ē2 = Pe1

λ̄21 = ελ12 =: ελ

Ā2 = PA1P
−1

β̄1 = β2T

whereP, T ∈ {A ∈ GL(V ) : ĀA = ε}, and the initial valueϕ0 of ϕ satisfies

ϕ̄0 − εPϕ0T = 0

then

p12 = εp̄21

∇U(x, y, t) ∈ R2.

Proof. This choice ofAi andei is consistent with conditions (2.12) and compatible with
(2.11). One can check that̄ψ0 = Pψ0P

−1, thus

b̄2 = Pb1 (4.9)

b̄1 = εPb2 (4.10)

and for theβ ’s we have

β̄2 = εβ1T (4.11)

β̄1 = β2T . (4.12)

The equations definingϕ are

∂ϕ = b1 ⊗ β1 (4.13)

∂̄ϕ = b2 ⊗ β2 (4.14)

i∂tϕ = b1 ⊗ ∂β1 − ∂b1 ⊗ β1 − b2 ⊗ ∂̄β2 + ∂̄b2 ⊗ β2 (4.15)
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and the complex conjugate equations, once equations (4.9) and (4.10) are used, give the
relations

∂̄(ϕ̄ − εPϕT ) = 0 (4.16)

∂(ϕ̄ − εPϕT ) = 0 (4.17)

∂t (ϕ̄ − εPϕT ) = 0. (4.18)

Thus, the initial condition

ϕ̄0 − εPϕ0T = 0

can be extended up tōϕ = εPϕT .
Observe that this condition implies detϕ̄ = ± detP detT detϕ. But, | detP | =

| detT | = 1. Therefore, there exists a constantθ such that detϕ(z, z̄, t) ∈ exp(iθ)R, so
that ∇U takes real values. Hence

εp̄21 = ε〈β̄2, ϕ̄
−1b̄1〉 = ε〈εβ1T , εT

−1ϕ−1P−1εPb1〉 = p12.

�

This proposition allows us to reduce theorems 2 and 3 to theDSII equation. As
done previously, we introduce the elementss(z, z̄, t) ∈ C2 ⊗ W , σ(z, z̄, t) ∈ C2 ⊗ W ∗,
8(z, z̄, t) ∈ GL(W) and8̃(z, z̄, t) ∈ L(W) in terms of which the solutions are constructed.
Again we will distinguish between different types of possibilities.

(i) We introduce some linear algebra:
(a) Type I.P, T ∈ {A ∈ GL(W) : ĀA = ε} are linear operators over the complex linear

spaceW .
(b) Type II. As in type I, but the operatorP must be chosen in an appropriate manner:

P = 01 + ε02

where we are considering a representation of the Clifford algebra given by the metric
(3.1) over the complex linear spaceW = Ŵ ⊕ Ŵ .

(ii) Take s(z, z̄, t) aW -valued solution of

∂̄s + ελ̄P̄ s̄ = 0

(i∂t + ∂2 − ∂̄2)s = 0

(a) Type I.λ 6= 0.
(b) Type II. We can takeλ = 0, but s(z, z̄, t) is a vector function that with respect to

the splittingW = Ŵ ⊕ Ŵ can be written ass(z, z̄, t) = ŝ(z, z̄, t) + ελ̄S(z, z̄, t),
with εS̄ = S, satisfyingS(0) = 0.

(iii) Chooseσ(z, z̄, t) ∈ W ∗ a solution of

∂̄σ + ελσ̄ T̄ = 0

(i∂t − ∂2 + ∂̄2)σ = 0.

(iv) Let 8(z, z̄, t) ∈ GL(W) be a solution of

∂8 = s ⊗ σ

∂̄8 = εP̄ s̄ ⊗ σ̄ T̄

i∂t8 = s ⊗ ∂σ − ∂s ⊗ σ − εP̄
[
s̄ ⊗ ∂̄ σ̄ − ∂̄ s̄ ⊗ σ̄

]
T̄ .
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such that the initial condition80 satisfies

80 − εP80T = 0

and define

8̃ := 8+ P̄ s̄ ⊗ (σ − ς8)

with ς(z, z̄, t) ∈ W ∗ such that〈ς, P̄ s̄〉 = 1.

We remark that in type II the function8 has the form

8 := φ ⊕ φ̄T̄

with φ(z, z̄, t) ∈ L(Ŵ ⊕ Ŵ , Ŵ ) solution of

∂φ = ŝ ⊗ σ

∂̄φ = ελS ⊗ σ̄ T̄

i∂tφ = ŝ ⊗ ∂σ − ∂ŝ ⊗ σ − ελ
[
S ⊗ ∂̄ σ̄ − ∂̄S ⊗ σ̄

]
T̄ .

We can now give the solutions ofDSII according to our scheme.

Theorem 5. Let s, σ , 8 and8̃ be as above. Then the functions

U = ln det8− ε|λ|2(x2 + y2)

p = λ+ 〈σ,8−1s〉 = λ+ det8̃

det8

solve theDSII equations given by (4.7) and (4.8). In terms of the functionsh̃ := 8−1s,
h := σ8−1 one can construct

h̃1 := h h̃2 := T
¯̃
h and h1 = h h2 = εh̄P

that satisfy equations (2.23) and (2.24), their components giving the wavefunctions.

Proof. Type I.From equations (4.10), (4.9) (3.3) we deduce∂̄s + ελ̄P̄ s̄ = 0. The Dirac
equation for(σ1, σ2)

t can be written, once we recall equations (4.11) and (4.12), as the
differential equation̄∂σ + ελσ̄ T̄ = 0. The wavefunctions have the form

h̃1 := 8−1s

h̃2 := 8−1P̄ s̄

but

8−1 = T 8̄−1P̄−1

from where our expression follows. The remaining one follows in a similar fashion.
Type II. From equations (4.10), (4.9) and the particular form ofP it follows that εS̄ = S.
Use the notation̂s1 = ŝ andσ = σ1. The Dirac equation for(σ1, σ2)

t is equivalent, once
we recall equations (4.11) and (4.12), to the differential equation∂̄σ + ελσ̄ T̄ = 0. �

The construction given in theorem 5 contains, in type I, the one-line soliton given in [1].
For type II theorem 5 is amassiveextension of thezero-masscase given in [13, theorem 7].
The deformations determined by thismasson the solutions contained in [13, theorem 7],
which contains the soliton solutions of [2] in particular, will be analysed elsewhere.



The Dirac equation and integrable systems ofKP type 665

Acknowledgment

MM acknowledges partial financial support from CICYT proyecto PB92–019.

References

[1] Anker D and Freeman N C 1978 On the soliton solutions of the Davey–Stewartson equation for long waves
Proc. R. Soc.A 360 529–40

[2] Arkadiev V L, Pogrebkov A K and Polivanov M C 1989 Closed string-like solutions of the Davey–Stewartson
equationInverse Problems5 L1–6; 1989 Inverse scattering transform method and soliton solutions for
the Davey–Stewartson II equationPhysica36D 189–97

[3] Boiti M J, Leon J-P, Martina L and Pempinelli F 1988 Scattering of localized solitons in the planePhys.
Lett. 132A 432–9

[4] Davey D and Stewartson K 1974 On three-dimensional packets of surfaces wavesProc. R. Soc.A 338 101
[5] Fokas A S and Santini P M 1989 Coherent structures in multidimensionsPhys. Rev. Lett.63 1329–33; 1990

Dromions and a boundary value problem for the Davey–Stewartson 1 equationPhysica44D 99–130
Santini P M 1990 Energy exchange of interacting coherent structuresPhysica/41D 26–54

[6] Chau L-L, Shaw J C and Yen H C 1992 Solving theKP hierarchy by gauge transformationsCommun. Math.
Phys.149 262–78

[7] Degasperis A 1990 The Davey–Stewartson I equation: a class of explicit solutions including as a special
case the dromionsInverse Methods in Actioned P C Sabatier (Berlin: Springer)

[8] Freeman N C, Gilson C R and Nimmo J J C1990 Two-componentKP hierarchy and the classical Boussinesq
equationJ. Phys. A: Math. Gen.23 4793–803

[9] Freeman N C and Nimmo J J C1983 Soliton solutions of the Korteweg-de Vries and Kadomtsev–Petviashvili
equations: the Wronskian techniquePhys. Lett.95A 1

[10] Gilson C R 1992 Resonant behaviour in the Davey–Stewartson equationPhys. Lett.161A 423–8
[11] Gilson C R and Nimmo J J C1991 A direct method for dromion solutions of the Davey–Stewartson equations

and their asymptotic propertiesProc. R. Soc.A 435 339–57
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