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Abstract. The propagator for thep heat equation in an arbitrary linear space is shown to give
solutions of the two-component Kadomtsev—Petviashwiii) (equations, also called Davey—
Stewartson system. This propagator is subject to the Klein—Gordon equation and its right-
derivatives are required to be of rank one, that imply that it can be expressed in terms of
solutions of the Dirac equation. Large families of solutions of the two-component Kadomtsev—
Petviashvilii equations are constructed in terms of solutions of the heat and Dirac equations.
Particular attention is paid to the real reductions of the Davey—Stewartson type, recovering in
this way the line solitons and the multidromion solutions. Moreover, new solutions to the
Davey—-Stewartson | are presented as massive deformations of the dromion.

1. Introduction

It is the aim of the present work to show that the free propagator for the heat equation in two
dimensions, with some conditions, determines a solution of the nonlinear two-component
Kadomtsev—Petviashviliikf) and related equations. Observe that was in [15] where the
two-componenkpP equation was introduced and it was also noted that it reduces to a two-
dimensional nonlinear Scidinger equation [21], the well known Davey—Stewartsps) (
equation [4]. This motivates the alternative namebefsystem given in [16] to the two-
componentkP. Nevertheless, for historical reasons we retain the terminology introduced
in [15].

Previous results in this direction [12] derived from the following construction. Let
¥(x,y,t) be an invertible transformation on a linear spaéedepending on the three
complex variables, y, . Assumey satisfies the linear equations

wy = WJ(x % = 1//xxx
then the linear transformation oW defined asF(x,y,t) = ¥.(x,y,t) - ¥(x,y, 1)t
solves the potentiakp equation forF, (F, — ;Fux — 3F2)x = 3Fyy — 3[Fx, Byl If
one wants to have a scalar potenti®d equation it is enough to impose the additional
restriction onF, F = A+ e ® a, whereA € L(V), e € V are constant elements and
a(x, y,t) € V*. That meangr be a rank-one operator modulo a constant operator. In that
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case the functionf(x, y,t) = {(a(x, y,t),e) is a solution of the potentiakrp equation,
(fi = 2fox — 3fD: = 2fyy. The new condition reflects o through the relation
Ve ¥l = A+ e®a or according toy, = Ay + e ® B once we defingd = avy.

For this linear functional we find the equatiofi$ = B.x, B = Bxxx Which parametrize
the space of solutiong for which f = (B, ¥ ~1e) gives a solution of the potentialp

equation.

Letting v depend on more spatial variables x,, . .. (here we shall be interested in two
variablesxi, x) would result in multicomponem equations. One proceeds along the same
lines outlined above, but now with two coordinates x,, vectorse;, e; and two constant
operatorsAi, A,, to get the two-componemtr equation from the flow defined by the heat
equationy, = Ay (the timer occupies the place of the variabjein the conventional
KP). In [13] there were obtained corresponding formulae for the two scalar functions
p12, po1, instead the singlg previously considered, that are of the fopny = (B1, ¥ Le),
p21 = (B2, ¥ e1), where we denote by (xy,7) and B2(x, t) two solutions of the heat
equation inV*. That construction lay on the algebraic relationgsA, = A,A; = 0,

Aie; = Azer = 0 which in turn gave heat equations for the vect@igxy, t), B2(x2, t)
which make up the solutiong;, and p,1. In fact the propagatoy (x1, x2, t) € GL(V) was

of the formyr1(x1, t) + ¥ (x2, t). For related formulae for the solutions obtained by these
methods see [6,7,9,10,11,17,18,19, 20, 22].

This paper deals with the problem of determining under which conditions the free
propagator of the heat equation would continue to give solutions of the two-companent
The answer is that one can replace the algebraic relations written above by the less restrictive
equationsA1A,; = AzA1, Arex = Aicer, Azer = Aziez t0 Keep thep;; as solutions. Now,
however, one finds that the formulae expressing the pgwliffers by the additive constants
A;; from the previous ones and that the equations satisfied bg;thés the heat equation
in two dimensions. Thug; and 82 now depend on the two variableag and x, and are
connected by the Dirac equation with mass. When this mass goes to zero one recovers
the preceding situation of separated variables in the propagatand the vectorg;. A
remarkable aspect of the new setting that deserves to be mentioned is the description of
the solutionsp;; by elementary equations of mathematical physics. These are the heat and
Klein—Gordon equation for the propagat¢r and the Dirac equation for the vectogs.

The appearance of mass has the effect of modifying the asymptotic behaviour pf; the
as it appears when examining dromion solutions oftihequation, a real reduction of the
two-componenkp.

Besides the system considered until nhow, one can consider its reduction to a single
function that satisfies thes equation we alluded to before. This amounts to the replacement
by real variables of the complex variableg x, and the substitution of the heat equation
by a Schédinger equation. In that case we find that for the concrete solutions there are
linear constraints resulting in thes| andbsii variants of the Davey—Stewartson equation.

The organization and contents of the paper are as follows. In section 2 we derive the
two-componenkpP equation from the heat equation and appropriate linear constraints that
can be described by means of the Klein—Gordon equation and the Dirac equations. In
this context we obtain a Lax pair formulation. The construction of solutions is treated in
section 3 where we analyse some examples in the simplest cases. It ends with a treatment
of the reduction to the nonlinear Sélinger (LS) system. Finally, we study in section 4
the reduction problem and give sufficient conditions for the construction of solutions of the
DS equation. For th@si reduction the line soliton as well as the multidromion solution are
recovered. Moreover we give new solutions, which we have called massive deformations
of dromions.
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2. The two-componentkP equations

In this section we shall study automorphisiéx;, xz, t) € GL(V) of some complex linear
spaceV that depend on the complex variables x,, r according to the heat equation

(0 — MY =0, (2.1)

where A = 812 + 82? is the Laplacian and; = d/dx;. Then we can think ofyy as a
representation of the free propagator of the heat equation in the gpdle flow associated
with the LaplacianA.

Besides equation (2.1), which takes place in the Lie grougVGLwe are interested
in the flows induced on the Lie algebtaV) of linear operators orV. To this end we
consider the right-derivatives

Fio=ay -yt (2.2)

for which the zero-curvature condition they satisfy (which holds by construction) can be
written as

02F1 4+ F1F> = 01Fo + FoF1 = Q, (2.3)

where we have also defined the operator funct®txi, x2, ) € L(V). Observe thatQ
admits also the expressial = 9,3.v - 1, or ¥ and Q are connected by a generalized
Klein—Gordon equation

(0102 — Q)¢ = 0.

It is easy to see that an automorphighixs, x», r) € GL(V) satisfies (2.1) if and only
if its right-derivativesF; (x1, x», t) as defined in (2.2) are solutions of

& F1= (32 — 03)F1 + 2(1F1 - F1 — F - 92F2) + 20,0

O Fy=—(02 — 03)Fy + 2(8oF2 - Fy — Fo- 31F1) + 201 0.

The case of interest in connection with integrable systems appears when the operator
function Q is a constant operator, a condition that will hold from now on.

Proposition 1. The two conditions for the automorphisin
(0 — Ay =0 (2.4)
(010 — Q)Y =0 (2.5)

where Q0 € L(V) is a constant operator, are equivalent to the following equations for the
right-derivativesFy, F, of i:

02F1 + F1F2 = Q (2.6)
oo+ FoF = Q 2.7)
& F1= (32 — 35)F1 + 2(1F1- F1 — F1- 9:F»), (2.8)
W Fr=—02 — 02 F + 2(02F> - F» — F2- 31 Fy). (2.9)

Equations (2.6)—(2.9), as we shall show, can be considered as an operator extension
of the two-componenkp equations. In fact the two-componex# equations arise if we
impose rank-one constraints on the right-derivative®f .
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Definition 1. The rank-one constraints are defined by the equations:
i (x1, x2, 1) = (A; 4+ i ® o (x1, X2, 1))V (X1, X2, 1) i=12 (2.10)
where A; € L(V) are constant operators subject to

A1Ar = AyA1 = Q (2.11)
with Q € L(V) a constant operatoe; € V are constant vectors such that

Arer = Aige Age1 = Aoier M2, A21 € C (2.12)
anda; (x1, x2, t) € V* are linear functionals depending am, x», 7.

We now introduce the functions in terms of which the two-compomrergquations are
defined.

Definition 2. The functionsp;; are given by

pij = hij + (@i, ) i#] (2.13)
and

P11 = —Ai2h21x2 + (@1, e1) (2.14)

P22 = —hi2A21x1 + (a2, €2). (2.15)

Then equations (2.3) and (2.10) imply
0201 + prooty + 1Ay =0
(2.16)
0102 + po1oy + a2A1 = 0.

Upon contraction of (2.6) and (2.7) with ande, we deduce that ify is a solution of (2.5)
and (2.10), then the functions; given in definition 2 are solutions of the equations

d2p11+ prap21 =0 (2.17)

01p22 + p12p21 =0 (2.18)
that imply the existence of a local potential, ddy in terms of which

pi = U
fulfilling the relation

p12p21 + 010U = 0.

The evolution for they; is determined by (2.10) for the right-derivatives together with
(2.8), (2.9) and (2.6), (2.7) that give
0,1 = (812 — 822)061 + 20101 A1 + 281[711051 — 2[)12820[2 (2 19)
a,«Olg = —(8% — 822)02 + 2320{2 A2 + 232[)22 oy — 2p21310[1. -

Contracting them withe; ande; one finds the following:
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Proposition 2. If ¥ (x1, x2, t) iS a solution of (2.5), (2.4) with right-derivatives as in (2.10)
then p1,, p21 a@s given in definition 2 and the potenti@l satisfy the system of equations

0102U + p12p21 =0 (2.20)
& pr2 — (82 — 33) p12 — 2p12(07 — dHU =0 (2.21)
3 po1 + (02 — 82) po1+ 2p21(82 — 935U = 0. (2.22)

This system is that of the well known two-compone&rtequations.

Therefore as a first result we have obtained a description of them by meansfadethe
equations (2.4) and (2.5) for & subject to the linear constraints (2.10). The functions
pij satisfy the equations defining the Darboux coefficients or rotation coefficients for an
orthogonal system of curvilinear complex coordinates on a complex surface. The time
evolution, as given by the two-componemtequations, represents an integrable deformation
of them [16].

Let us recall that the Lax equations [16] are one of the following linear systéms (
denoting the adjoint of) for the wavefunctions = (h1, ho)" andi = (h1, ho)':

d
( > P12> h=0
p21 01

(2.23)
9 i
( 2 P21> B0
P12 01
(a, — 92402 — 202U 2p1202 ) L —o
2p21h g +92—02-202U)
T (2.24)
(a, + 97 — 02 4+ 202U —2p219; ) 0
—2p12d; o —024+024+202U/)

and that the two-componer equations are a consequence of the compatibility conditions
onh or h. Here the coefficients; give a diagonal metric of zero-curvatukédx? + h3dx2,
and theirr-dependence provides an integrable deformation of that metric.

We have two different methods for constructing wavefunctions, depending on whether
we consider the vector spadé (which uses the dressed propagatoand givesh), or its
dual V* for the second method giving, which relies on the functionalg; and«, and also
on the vacuum propagatary constructed in terms of the operatots and A, as

Yo(x1, X2, 1) = explAix1 + Azxz + (AT + AD1] (2.25)
(i) The first method identifies; with the vector functions taking values in
hi =y e (2.26)

that satisfy the (2.23) and (2.24), as follows from the relations
W+ YA+ ¢ ®a) =0

oW+ (Z Ve @ o — Y HA + e ® a») =0

i=1,2
when applied to the vectoks, e,.
(i) The linear functionals

h; = (X,‘WO (227)
also satisfy equations (2.23) and (2.24), as one can deduce from equations (2.16).
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3. Construction of solutions

As we have seen, the two-componew equations can be solved in terms of a function
¥ (x1, x2, 1) € GL(V). In order to solve the equations definigigin proposition 1 together
with the constraints (2.10), we define the new linear functiogalts= «; .

We shall show that such e C?® V*, with componentss;, B := (81, B2)’, solves the
Dirac equation in a two-dimensional space-time of coordinates, and metric given by

ds? = I (dbry ® dxz + dxy ® dxy). (3.1)
In this case the Dirac matrices, y» satisfy

yP=0 i=12  ypytrn=1
and an action of this Clifford algebra of? is given by

_(0 1) _<o o>
"=\o o 2=\1 o)

We now introduce two masses, each which can be considered as the dual of the other,
as the following bilinear expressions in the gamma matrices:

m, = diag(riz, A21) = Z Yivikij
ij
m,, = diag(A21, A12) = Z YiVjhji
ij
and the corresponding Dirac operator is givenaby= y191 + y20>.
Note that equation (2.10) can be written in the form

Ay =AY +e®pBi (3.2)
so that

0;0;y = A;0; Y +e; ®9;B;.
In particular, when # j the above equation reads

Oy = A102¢ + 1 ® 321

OY = A201¢ + €2 ® 0182
which, bearing in mind definition 1, results in the Dirac equation for the spinor coefficients
Bi:

0182 + A21p1 =0

0281+ A12B2 =0
equations that can be condensed to

@, +m,)g =0.

The deformation equation fg8 follows from the d,-derivative of (3.2) and the evolution
(2.4) of ¢ from which we deduce the relation

0 — ADAY =¢; ® 9,

that gives(d, — A)B = 0 once we replacéd; — A;)y by ¢; ® B; according to (2.10).
Observe in particular that is a solution of the Klein—Gordon equation

(0102 — A12A21)8 = 0.
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In order to constructy we select the vector functions

b; = walei

with ¥ given in (2.25). The vector functioh := (b1, by)" with values inC? ® V satisfies
(@, +my)b=0 (3.3)
@ +A)bp=0 (3.4)

but these two equations do not characterize the functenrs lﬂo_lei completely. We are
now in a position to describ¢ in terms of 3.

Proposition 3. Let B;(x1,x2,7) € V*, i = 1, 2, be functions ofxy, x», ¢ taking values in
V*, such that8 = (81, B2)' is a solution of

3, +m,)p=0
(3 — A)B =0.

A solution v (x1, x2, ) to (2.5),(2.4) and (2.10) can be represented as
Vv=vo-¢

whereg(x1, x2, t) is determined by the system of compatible equations

dp =Y [bi @B — b ® Bi]. (3.6)
i=1,2

The a's are defined by the relationg = ;.
Proof. Just rewrite the equations fgr in terms of 3. O

Thus, given an initial pointx?, x9, t0), wherey takes the valugo, and an appropriate
pathy : [so, s1] = C3, y(s) = (x1(s), x2(s), £(s)), connecting this point with(x1, x5, 1),
the functiong can be expressed as

f dxq dxo
@(x1, x2, 1) = ¢o + / dsl:ds(s)(bl ® Bu) (¥ (s)) + a(s)(bz ® B2)(y(s))

S0

dr
= bi ® 0,8 — d:bi ® B : 3.7
+y (S),»;z( ® 0ip ®ﬁ)<y(s>>] 3.7)
We can choose the path from (x, x3, f0) to (x1, x2, #) by first connectingx?, x2, 7o) to
(x2, x2, 1) by a straight line, and then fromx?, x2, 1) to (x1, x, ) by any path keeping
unchanged. I, and B;, i = 1,2 and their derivatives vanish &t?, x9) for all ¢, then
equation (3.7) simplifies to

i1 dx; dx,
@(x1, x2,1) = ¢o + / dSI:dS(S)(bl ® By (s), 1) + a(s)(bz ® B2)(y (s), l)i|

S0

a path integral in the plan@y, x2) with y (s) = (x1(s), x2(s)). In that case, the path integral
can be expressed in terms of the primitiviss' = [7 dx; that commute withy;. In this
manner one recovers the approach adopted in [13], whevas written as

9 =C+ 07 b1 ® 1) + 05 (b2 ® B2)
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for the A;; = O case.
We define the operators

§ij=v+te®Bi—e; @Y
Gij :=(p+bj®ﬂ,- —bj®8jg0

where then;, 8; (x1, x2, t) € V* are linear functionals such that
(mj.ej) =3, bj) =1 j=12

Note that for a givery; we can takes; = n; ¥ and in that case we have the relations
&ij = Yodij-

We can now state the main result of this paper. The proof of it follows the ideas of
[13, theorem 2].

Theorem 1. If ¢, as given by (3.5) and (3.6), has a determinant then the functions

U = —r12A21x1x2 + Indetyp

deté, N detso
dety 7 dety

p12= A1z + (B, ¢ 'h2) = ra+

detéy N detsz;

=2 Lo b)) = A =
P21 = A21+ (B2, ¢~ "b1) 21+ dety 21 dety

represent a solution of (2.20)—(2.22). Moreover, the functions

hi = ¢~ tb;
hi = Bip™*

satisfy equations (2.23) and (2.24), and their components determine the associated
wavefunctions.

Note that with the characterization given fef, and p,1 the computation of the inverse
of ¢ is avoided by the use of determinants. This is an advantage of the determinant-type
expressions.

Clearly, the two-componemtP equations are invariant under global phase shifts:

P12 — expif) p1o
P21 — eXp(—if) p21

U—->U

with 6 € [0, 2rr). To lift this action up to the linear data we define
B — exp(it/2) By
B2 — exp(—i6/2)B2
e1 — exp(—if/2)er

ex — expif/2)es
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which preserve the Dirac equation for tlgés and theb’s if and only if the A’s transform
according to

Ao —> eXﬂiQ))\.lz

Ao1 — eX[X—i@))»z]_.

The equations describing the time evolutionffand b; are obviously preserved. In this
transformationA; and A, remain invariant, and as a consequence of (3.5) and (3.6) the
automorphismy do also remains invariant. One interesting consequence of this invariance
is that we can choose the phase of one of tteearbitrarily, for example we may choose
A12 € R without loss of generality.

As an example we considéf = C, suppose tha¢;, e, € C are non-zero so that we
can introduce the parameter= ¢;/¢,, in terms of which the operators,, A,, which now
are complex numbers, can be written&s= A1ok and A, = A»1k~1. Then we have

b(xy, x2,1) = e €Xp[ — (hiokxy + Aotk txp + (A5k% + A3,k 2)1)]

B(x1, x2,1) = Boexp| — (Aaalx1 + Aol "txp — (W51 + )»521_2)1)]

e1 c1
=(n) =2
(/] C2
with ¢; € C* and! = ¢3/c,. We have taken the linear functiongds to be of exponential

type, although the general expression will be any linear superposition of exponentials.
We denote byE (x1, x», t) the function

E(x1, x2,1) i= exXp[(h12k + Aaal)x1 + (Aoak ™ + Aol Do + (W3, (k% — 172)

where

+25, (k2 — %))
in terms of which

@(x1,x2,1) =C +

E(x1, x2,1)
whereC € C is an arbitrary constant and the amplitude= C satisfies
€1C1 €202

T haok+odl  Apk i At

The solution associated with the two-componeptequations is
eic2

A+ CE(x1,x0,1)
€2C1

A+ CE(x1, x2,1)

U(x1, x2,1) = —A1odo1x1x2 + IN(C + A/E(x1, x2, 1))

and as wavefunctions we can chodse- 1/(C + AE)b or h = 1/(C + AE)B.
As a second illustration, we consider the case= C?. If e¢; ande; are independent,
there exists a basis where the general expression for the matricasd A, is

—A10k?
AL = < q1 12 )
Aol 0

0 A12
4= (Lt )
—Aok q2

p12(x1, X2, 1) = A2+

p21(x1, X2, 1) = Ap1 +
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whereg1, g2 € C, k € C* satisfyq; = k?g». For the vectorg; ande, we have

(al 0

e1 = €y =

! 0 2 az

with a1, a» € C* such thak? = —a1/a,. For the computation ofy it is useful to determine
the eigenvalues of the matrix

M (x1, x2, 1) '= A1x1 + Azxz + (A2 4+ Ad)t.

The eigenvalueg.. are

=1 (TrM +/(Trmy? — 4detM)
a formula that can be written as

A = Cequxa(t) + L3qoxa(t) — $4- (g7 — gt

where we denote

xi (1) '=x; +qit
and
¢= 1 haodo
V4 g
(ri=3+¢.
Once the eigenvalues are known it is easy to fird= expM, recalling that

M — A M — A

expM = e — Tt
Ay — Al Ay — Al

The final expression is
1 (g“+eM —¢e (e - e*>>
20 \‘n(gh —e) — € +ipe
and we get the formulae
b1 = a1 (§+e—'\+ - {e_)‘)

20\ (et —e)
b az < —%(e_k* —e™) )
2= - .
2§‘ _€7e7l+ + ;-Jre*)u,

For theo’s we can consider, in particular, exponential expressions as those just written.
Thus, letry, r2, 1, c1, c2 € C* be such that;/r, =1 andcy/c2 = 1. As before, we introduce

0=

£ e 1 hodo
V4 riro
£ =5 +&

[ = Exri(xy — rat) + Exra(xp — rat) + E4E_(rf + 1))t
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in terms of which we write

Cc1 _ _ A _ _
fr= oy (Gre —E e, e —e o)) H
2

,32:2

(—22(er —eh), —keltEe)H
where H € GL(V) is an invertible linear operator.

Formulae fore and the solutions to the two-componestt equations readily follow
from the preceding computations. In the next section a detailed account of this particular
example will be given for th@si reduction.

These two examples illustrate the method of construction in very simple cases. However,
using theorem 1 and proposition 3 we are able to construct large families of solutions of
the two-componenkp equations. In the rest of this section we shall concentrate on two
particular examples where the spaées chosen to be infinite-dimensional, in which case
equations (3.3) and (3.4) will suffice to describe the solution space.

3.1. The Klein—Gordon equation

We shall deal here with a non-zero mass Klein—Gordon equation. We first introduce
the objectss(x1, x2,1) € C>° ® W, o(x1,x2,1) € C2® W* and ®(x1, x2,¢) € GL(W),
®;;(x1, x2,¢) € L(W) in terms of which our solution is constructed.

(i) Let W be a complex linear space; we shall denotesbynd s, two vector functions
such that the spinar = (s1, s2)" solves

0, +my)s =0
0 +A)s=0
with deth = A1oh21 F# 0.
(i) We define linear functionals; (x1, x2, ) € W*, i = 1,2 such thato = (01, 02)" is a
solution of
(3, +1it,)o =0
(0; — A)o =0.

(iii) Let ®(x1, x2, 1) be a solution of
8,»<1>:s,»®0,- 121,2

9P = Z [si ® di0; — 0i5i ® 0y]
i=12

and we define
D =P +5;Q (0, — ;D).
with ¢;(x1, x2, 1) € W* such that(g;, s;) = 1.

According to the preceding definitions we present a scheme for the construction of
solutions to the two-componerp equations in the caseoio; # 0.



652 F Guil and M Maijas

Theorem 2. Lets, o, ® and ®;; be given as above. Then the formulae

p12= A2+ (o1, @ Lso) = Ao+ detds;
detd

Pa1 = a1+ (02, @ Lsq) = Ao + %
detd

U = Indet® — Aohr1x1x2

provide a solution of (2.20)—(2.22). Moreover, the functions

hi = d L i=12
h;

o;dt i=1,2

satisfy the corresponding (2.23) and (2.24) determining their components and hence their
associated wavefunctions.

Proof. We choose the vector spaétas the space of bi-infinite sequences in a complex
linear spaceW, thusV = ¢4 (W) is the set of vectors

eZ(W) = {{wn}nEZ LW, € W}
The shift operatoA acts onV according to the formula

A{wn }neZ = {wn+1}neZ

which is an invertible operator with inverse™ given by
Ail{wn}neZ = {wy—1}nez.

Take A; = A12A, Ay = A1A™L, e1 = e ande, = A~le, wheree # 0 is some constant
vector inV.
From the definition of thé’s we obtain the recurrence relations

01bjn + A12bj i1 =0
02b; n + Ao1bi 1 =0
so that, ifA10A21 # 0, we can write

bi = {' ) )"51_28225‘17 _)M£1182Sz, Si —)»1_218151, )"5228]%5‘17 o '}
! v v 0 !
n=-—2 n=-—1 n=0 n=1 n=2
wheres; := b;o. As b satisfies (3.3) and (3.4) so do all its terms; this happens for
s = (s1, s2)" in particular.
For the 8’'s we choose

ﬂi:{".7o’oi’0""}
niO

with o; functionals inW* subject to the same equations as fhe
These choices give the results stated in the theorem. O
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Observe that in this theorem it is necessary thak,; # 0; in the next subsection we
shall give a construction where this is not needed.

3.2. The Dirac equation

One can write more explicit expressions for the solutions when restrictions on the function
Y are imposed. In this direction, we shall analyse what these solutions areywbatisfies
a Dirac equation and consequently the Klein—Gordon equation (2.5). We first give some
basic results regarding the representation of the Clifford algebra associated with the metric
introduced in (3.1).

The Clifford algebra associated with the metric? &= g;;dx; ® dx;, defined in (3.1),
generated by, v, through the anticommutation relations

{vi, vi} = 2gij

can be represented in a linear spdceby operatorsl';, I',. We introduce this notation

in order to distinguish between these gamma matrices and those corresponding to the
representation irC2. It can be easily shown in that case that the specdecomposes

as a direct sum

V=VieV;
whereV; = V, = V. The associated resolution of the identity is given by
id= P+ P,
with the projections?;, (Pi)2 = P, and P, P, = P,P; =0, defined as
Py :=T1I"7, Py =TI
Moreover, sinceV; = I'; V it follows that every representation is of the form
F1=<0 1) F22(0 0)
00 10

where the matrix form is referred to the linear splittinglofinto isomorphic subspacég
and V.
Given 11z, 21 € C we define the operatofi € L(V)

mr = A1 P14+ A12Ps.

The Dirac operator associated with this particular representation of the Clifford algebra
reads

or :=T'101 + 202
and the Dirac equation

(Or —mr)y =0 (3.8)
for the automorphismy (x1, x2, t) € GL(V) implies the Klein—Gordon equation

(0192 — A12A2) ¥ = 0.

The operatorQ = i12A2; iS now proportional to the identity and equation (3.8) can be
written in terms of the right derivativeg;, F, of ¢ as

[1(F1 — Toko1) + To(F2 — T'irg) = 0. (3.9)
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To treat the constraints (2.10) in the same fashion, we first observe that the operators
A1, A, in addition to (2.11) must be consistent with (3.9). One easily deducesithat,
satisfy the constraints given by (2.11) and (3.9) if they have the form

Ay =o1T2 + q1P1 — d12kTy
Az = d1al'1 + q2P2 — hork T2
whereg; € L(V), i = 1,2, andk? € GL(V), a linear invertible operator, satisfy
q1—k*q2 =0
and the vectore;, e, are connected by
e1 — k’T'1e = 0.

One can see that with this choice for tle, ¢;, i = 1, 2, (3.8) holds by virtue of the
constraints (2.10), which can be solved according to proposition 1.
Note that in addition to equation (3.3) the vector functiépsre also solution of

(O + 7iir)b; = 0 i=12 (3.10)

that follows from the particular form of the operatoAs and A, when dealing with the
Dirac equation fony. However, equations (3.3) and (3.10) imply, with respect to the linear
splitting V = V1 @ V», that theb’s can be written as follows:

by = Bl + A21B (3.11)
by = A12B + bo. (3.12)

and this makes the Dirac equations (3.3) and (3.10) equivalent conditions.e;Taay;,
together with the definition of thg;’'s, has as consequence the initial value condition

B(0) = 0. (3.13)

The conditions that we have been considering so far do not completely characterize
the b;’s which are of exponential type by definition. As before, a particularly interesting
solution arises in an infinite-dimensional linear space In that case the vectors are
replaced by vector functions characterized uniquely by the equations written above.

In the present case theorem 2 can be formulated as follows. I'heF, be a
representation defined by the metric (3.1) in the complex linear spaeadW = W & W
the associated decomposition. Lsgtands, be two vector functions af;, x», ¢ with values
in W such that with respect to the linear splittifig = W @ W can be written as

s1= 5§14+ A1S (3.14)

52 = A12S + §2 (3.15)
with § such that

S0) =

Theorem 3. Lets, o, &, ®;; denote the elements appearing in theorem 2 wismd W as
above where the;; are arbitrary numbers. Then the formulae of theorem 2 remain true.
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Proof. We take

V= tn(W) == {{wa)uzo : wy € W)
as the space of sequencesith Choosek? = 1 andg; = A, A being the shift operator in
(W), so thatg, = A.

With this choice we study the vectots andb,. Due to equations (3.11) and (3.12),

with respect to the splittiny = ¢n(W) @ £n(W), we can write

b1 = {131,;1},,>0 + )‘21{3"}@0

bo = h2{ B}, + {B2n), o
The definition ofb; = lﬂo_lei gives the recurrence relations

b1y = —1b1, + A1oA21B,

boni1 = —8b2, + M2r21B,

A12By1 = Aio(—01B, + b2y

A21Byi1 = Ao1(— 2B, + b1,)
together with equations (3.3) and (3;4) 1}1{0+Bo and Bo+l32,0. The conditionBy(0) = 0
follows from B(0) = 0. Defines; := b; o and S := By. From the definition ob; one also
deduces the relations

b2y + r2hoB, =0

d2b1, + r12A21B, = 0

A21(01B, + b1,) =0

212(02B, + ba,) = 0.
Observe that whenioip1 £ 0 we can write a symmetric recurrence relation for Bie:

Buy1 = b1, +bay
but this equality fails whemi,12; = 0. In this case, if one of the’s is not zero, we could

use for B the remaining non-trivial recurrence relation. If both of thare zero,B = 0.
For the8’s choose

,3,‘:{0',‘,0,0,...}

whereo; (x1, x2, t) is a linear functional il¥* such thatr is a solution to the Dirac equation
and (3, — A)o = 0.

Now, recalling equations (3.5) and (3.6), a proper choice of the integration constant
allows us to replace the infinite-dimensiogaby ® in order to get the desired result.

Taking into account (2.26) and (2.27), the form of the wavefunctions follows in a similar
manner. (I
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Note that whem, = A; = 0 the theorem above reduces to [13,theorem 3]. If this
is the caseS = 0 ands; depends orx;,t and takes values ;. The Dirac equation
disappears and only the deformation equations remains; fas well. Therefore, theorem 3
can be understood asnaassivedeformation of thezero-masssolutions given in [13]. But
this algebraiomassshould not be confused with the energy or mass of the solutions to the
two-componenkp equations.

Observe that the Dirac equation farin spinor components, reads

3281 + Aoh1S =0 (3.16)

9152 + A12A21S =0 (3.17)

A21(018 4+ §1) =0 (3.18)

112(828 + §2) = 0. (3.19)
If 12421 # 0 thens; ands, derive from the potential-S, whereS is a solution of

(0102 — A12421)S = 0. (3.20)

Thuss is parametrized functionally in terms of an arbitrary solutibof the Klein—Gordon
equation (3.20) withS(0) = 0. If A10021 = O thens; is x,-independent and, does not
depend onx;. Moreover, if for exampler;, # 0, thenS = Si(x1,t) + S2(x2, ) and
S2(x2, 1) = 0282(x2, t) defined by (3.19) in terms of.

The reduction to the nonlinear Satihger system.As an illustration of our construction
we shall examine briefly what the solutions are for the reduction to the nonlineaidsofer
(NLS) equation.
Given an arbitrary vector field = a10; + a9, one can ask whethéfp,;o = Xpo; =0
consistently with the time evolution, so that we have a one-dimensional reduction of the

two-component system. In our scheme this means Xwat= 0, i = 1,2. Taking into
account the rank-one constraints ffr this is equivalent to

Xy =yK
or

Xo¢ + (a1A1 + a2A2)p = K
for someK € L(V). The operatoiX is determined by the initial conditions
K = @5 (a1b1.0 ® Bro + azb2o ® B2.0) + ¢y (a1A1 + azA2)po
and theg’s are now subject to
Xpi = BiK.

One can show that there exist independent varialileand 7', the former being a
linear function ofx; andx, and the latter a linear function of and dependent variables
P = exp(At) p12, Po1 i= exp(—At)po1, Where A is an appropriate constant, such that
the two-componenkp equations reduce to the well knowakNS-zs system or nonlinear
Schibdinger (LS) system:

dr P1o — 82 P1p — 2P5 Py = 0

or Po1 + 8}2, Py + 2P221P12 =0.
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4. The Davey-Stewartson equations

We now slightly modify our deformation to the free Sgtinger equation
i,y = 3 — )y
so that the two-componeRrP equations read
0102U + p12p21 =0
10, p12 — Ap12 — 2p12AU =0
10 p21 + Ap21 + 2p21AU = 0.
Now, theorem 3 holds iB; is a solution of
(0, — 2 +0)p =0  i=12
and ¢ satisfies the modified deformation equation
10,0 = b1 ® 0181 — 9161 ® P1 — b2 ® 322 + 0202 ® Pa.
Theorems 2 and 3 require thatando;, i = 1, 2 be solutions of
(id, + 02 — 02)s; = 0
(i0, — 924 92)0; =0
for i =1, 2, and also that satisfies the deformation

10, P =51 ® 0101 — 9151 ® 01 — 52 ® 0202 + 3252 ® 0.

4.1. The Davey-Stewartson | equations

The DsI reduction appears when = &, x, = n € R and
prz=¢pa=ip e==1 VU, n.t) € R?

(the bar denotes complex conjugate) which implies the differential equations
39,U +e|p/*=0 (4.1)
id,p — Ap —2pAU = 0. (4.2)

These equations are just thel in its defocusingg = 1, and focusings = —1, cases.

The problem to tackle here is which data, 8; are suitable for this reduction. If the
complex linear spac& is furnished with a scalar product and V — V* denotes the
standard antilinear isomorphism generated by this scalar product, a possible solution to this
guestion is as follows.

Proposition 4. If
A=A = 8):21
pL=biH
Bo = ebgH

@oH = Hyyo
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where H = H' is a Hermitian operator ang, denotes the value op(&,n, 1) at
& =&y, n = no, t = to, then the functiong1,, po1 andU satisfy

P12 = €P21 VU, n, 1) € R%

Proof. Observe thag = (81, B2)" is a solution of(d, +, ) = 0 and(id, — 07 +92) = 0
becauseé = (b1, by)' is a solution of(d, + m,)b = 0 and(id, + 87 — 82)b = 0.
From definition 2 we have

P12 = Ao+ (bl, Hp™'by)

po1 = Ao+ (b}, Ho™'by)
so that

epo1 = haz+ (b, (o) " Hby). (4.3)
From the differential equations defining which read

dep =by @ bIH

3,9 = £bp @ bLH

0,9 = [b1 ® 9} — dcb1 ® b} — £(bs @ 3,b) — d,bs ® by)|H

one can see that

0 (¢'H — Hp) =0 (4.4)
an((pTH - H(p) =0 (4.5)
% (p'H — Hyp) = 0. (4.6)

Therefore, if the initial conditioryg is such that
gogH —Hpo=0

then this condition can be extended, by means of equations (4.4)—(4.6) for&vgny so
that

o'H—Hp=0

Then equation (4.3) impliespz; = p12.
A similar argument ensures that; = p;;, S0 thatVU takes values iR?2. O

Let us consider the reduction tgsi of the simple example considered previously with
V = C. The result is that if we introduce the function
E(&,n,1) := exp(2rcosa [kE(t) + ek n(1)])
where
£(t) :=& + 2xksina ¢t

n(t) :=n— 2erk tsinat
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then
kBH
CEE,n,1) —kB/(A(&* + c€7%))
wherek, B > 0 are positive numbers;, H, 2 € R are real numbers and € [0, 2r), is
the amplitude for a solution of thesi equations which happens to be a one line soliton
solution ofDsI [21].

The reduction, in the defocusing case, of the= C2 example follows. Givew, g» < 0
we define

pE.n.t)=Ar+

0= |L_ 1P
V4 g

and we choosey, ¢ 2 such that 0< Q < 2, that isq1g> > 4|A|2. It proves to be convenient
to introduceQ. = i Q. We also definé&(¢) := & — ig1t andn(t) := n + igot, and the
corresponding elgenvalues reads := Q1q1&(t) + Qxqgon(t) +10:0_ (ql qzz)t. The
vectorsb; andb, in terms of which the solution is constructed are

b — 1L (Q+ exp(—iy) — 0- eXp(—k)>

T 20\ R (exp—iy) — exp—h)

b, — 92 ( - (@XP(—Ay) — exp(—A_)) )
=

20 \ Q_exp(—iy) — O exp(—1_)
The associate@’s that give rise to theosi reduction are found by using the prescription
B =b H,fori =12, with Hl = H.

The fundamental matrix i = id +¢ H, wheregy = id, now (&g, 79) = —o0 S0 thatb;
goes to zero at that initial point. Here the Hermitian maiix (¢;;) is defined by

¢11:= _8%2 exp(—(q1& + g2m)[ O+ exp(—20(q1& — q2m)) + O_ exp(20(q1£ — g21))

—-40,0_ COS(ZQ(ql + Q2)t)]

$22 = — 8Q2 exp(—(q1§ + q2n)[ Q- exp(—20(q1§ — q2n)) + O+ eXP2Q(q1€ — g21))
40,0 COSIZQ(% + CI2)t)]
A
¢12 = ~802 exp(—(q1§ + q2m)[eXp(—=20(q1§ — g2m)) + exp20(q1€ — gz1))

—2(co82Q (g7 + g5)t) + 20 siN((2Q(¢% + g5)1))].
The principal tau function is det, which in our case reads
detp =1+ Tr(¢p H) + detH detep.
One can check that dgt= g192 exp(—2(q1¢ + ¢q21))/4, and i H = (H;;) we can write

1
detp =1— 802 exp(—(q1€ + g2m)[ 4 exp(—20(q1€ — g21))

detH
T exp0(g:E — q2m) — To(t)] + % exp(—2(q1& + g2n)
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where
Y, = H11q1 04 + H2q20_ + 20 Re(H>y)

¥_ = H11q10_ + H2q20+ + 2L Re(H>1)

Zo(r) = 4 (Haqs + Hzz42) 0+ 0 €0820(a} + a)1)

+1Re{ Hz1(cos20 (g7 + g1 + 210 sin20(q2 + gD} |

This expression allows us to find the potentialthrough the formulay = —|A|%&n +
Indety. Moreover, the modulus of the amplitudg| is determined by p|?> = |A|? —
0: 9, Indetp. Wheni = 0 one recovers the general formulae for the one-dromion solution
first found in [3], an exponential localized solution in all directions. |Ag goes from 0
to g192/4 one finds a one-complex-parameter deformation of the one-dromion solution of
DSI. Motivated by the mass character of the parametén the Klein—~Gordon and Dirac
equations in which it appears, we call thenassive deformationsAlthough the solution
does not move in the plane a general constant velocity can be assigned by performing a
Galilean transformation. The resulting velocity is connected with the imaginary part of the
newgq’s.

The termX, gives a time dependence, so that has a pulsation with period given by
T = 7/(Q(q?+g3)). This breather character fop| disappears whely = 0, for example
in the one-dromion solution.

From the form of dep, where four independent exponentials appear generically, one
readily concludes that this solution cannot be a two line-soliton solution af$hequation
[21]. However, the representation witMathematicaof |p| strongly suggests a nonlinear
superposition of a one-dromion with a two-line soliton, with the dromion living in the
cross of the line solitons. The solution remains bounded, but now the asymptotic values at
infinity are non-zero, depending these asymptotics on the value @he two-line soliton
disappears wheh = 0 and the dromion almost disappears when the mhass$arge enough.
Moreover,Mathematicashows that only the angle of the two lines definedA¥, which
coincide with those defined by the two-line soliton, depend asymptotically. on

A more detailed study of this solution and its generalizations toMthaassive dromion
solutions seems to be of interest besides the study of the standard line soliton®v- The
dromion solution [14] appears whén = C?" andi = 0, so massive deformations appears
by allowing 2 to be distinct from 0.

Proposition 4 allows us to apply theorems 2 and 3 tookeequation. As before we
introduce the functions(¢, n, 1) € C2@ W, ®(&, n,t) € GL(W) and®(&, n, 1) in terms of
which our solutions are constructed.

(i) Let W be a complex linear space and define two vector functigng solutions of
@, +my)s =0
(id, + 07 — 92)s =0

with s = (s1, s2)" andm,, = diag(, er). We shall distinguish between two different

types of data:

(@) Type I. In this case. # 0.

(b) Type Il. In this case. € C can be chosen equal to zero awdmust be chosen of
the formW = W & W, whereW is a complex linear space, and the vector functions
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s; ands, decompose with respect to the linear splitthg= W & W as
s1=281+ erS

s2=AS + 5
with § satisfying
SO =0.
(i) Let ®(&, n, 1) be a solution of

0:P=51Q® SIH
0P =e52® s;H
10, = [sl ® 8@1 — 051 ® SI —&e(52 ® 8,7s2T — 0,520 sg)]H
where H is a Hermitian operator, for which the initial conditiaby satisfies
®LH — Hdy=0
we define
d=d+5,® (sIH —cD).
with ¢ (&, n, t) € W* such that(c, so) = 1.

Our construction of solutions can be stated in terms of these functions.

Theorem 4. Lets, ® and ® be as just described, witheither of type | or type Il, then

U = Indet® — ¢|A|%n
are a solution of th@si equations given by (4.1) and (4.2). The vector functions
ilj = <D_1S,‘

satisfy the corresponding equations (2.23) and (2.24) and their components give the
associated wavefunctions.

Observe that for the adjoint wavefunction we haye= fzITH, which follows from the

particular form of thes’s and the relatiord ! = (<I>T)_1H. We also remark that, because
the global gauge invariance,can be chosen to be real without loss of generality.

The type Il case is anassiveextension of [13,theorem 5] where the cdse- 0 was
considered. Recall that theero-masscase [13, theorem 5] was first discovered in [7] by
spectral means following the inverse spectral analysis of [Spforit also appears in [11],
where it was independently derived by direct methods. The kaseD contains the well
known dromion [3, 14] and gausson [7] solutionsos.
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4.2. Thebpsi reduction

For theDsIl case we take&; = x, VU = (U, Uy) € R2 wherex; =z =x +1iy, x, y € R,
andep,1 = p12 = p. The equations are now

AU+2£|p|2=O 4.7)
Siop — (32 — 89 p — 2p(82 — 02U = 0. (4.8)

Equations (4.1) and (4.8) constitute tbell in its defocusing £ = 1) and focusing
(e = —1) cases. Here we use the notatiba- 9, andd = 9.

Proposition 5. If
ex = Peq
Aol = EAip = €A
Ay=PA Pt
Br = BT
whereP, T € {A € GL(V) : AA = ¢}, and the initial valuep, of ¢ satisfies
%o — &Pyl =0
then
P12 = €p2a1
VU(x, y,t) € R?

Proof. This choice ofA; a_nd e; is consistent with conditions (2.12) and compatible with
(2.11). One can check thaty = PyoP L, thus

by = Pby (4.9)
b1 = ePbs (4.10)
and for theg’s we have
B2 = epiT (4.11)
Br = BT (4.12)
The equations defining are
3o = b1 ® B1 (4.13)
dp =b2® B2 (4.14)

10,0 =b1 ® 31— b1 @ f1 — b2 ® P2+ db2 ® P2 (4.15)
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and the complex conjugate equations, once equations (4.9) and (4.10) are used, give the
relations

(@ —ePpT) =0 (4.16)
(¢ —ePpT)=0 4.17)
3 (¢ —ePpT) =0. (4.18)

Thus, the initial condition
@0 — ePpolT =0

can be extended up @ = cPoT.

Observe that this condition implies det= +detP detT detp. But, |detP| =
|detT| = 1. Therefore, there exists a const@nsuch that dep(z, z,t) € exp(id)R, so
that VU takes real values. Hence

epn = &(Ba, §b1) = e(efaT, T 29 P Le Pby) = p1o.
O

This proposition allows us to reduce theorems 2 and 3 todbe equation. As
done previously, we introduce the elements,z,7) € C°Q W, o(z,7,1) € C?> ® W*,
®(z,7,1) € GL(W) and ®(z, z, 1) € L(W) in terms of which the solutions are constructed.
Again we will distinguish between different types of possibilities.

(i) We introduce some linear algebra:

(@) Type l.P, T € {A € GL(W) : AA = ¢} are linear operators over the complex linear

spaceWw.

(b) Type Il. As in type |, but the operatd? must be chosen in an appropriate manner:

P=T1+4+e¢el>
where we are considering a representation of the Clifford algebra given by the metric
(3.1) over the complex linear spaté = W @ W.

(ii) Take s(z, z, t) a W-valued solution of
ds +erP5 =0
(id, + 8% — 3%)s =0

(@) Type I.A #0.

(b) Type Il. We can take. = 0, buts(z, z,7) is a vector function that with respect to
the splitting W = W & W can be written as(z,z,1) = §(z,2,1) + eAS(z, 2, 1),
with ¢S = §, satisfyingS(0) = 0.

(iii) Chooseo (z, 7, t) € W* a solution of
do +er6T =0
(i, — 8% + %o = 0.

(iv) Let ®(z,7,t) € GL(W) be a solution of
0P=s®o

b =cPs®5T

0P =s5sR®0d0 —0ds ®0 —eP[§® 36 — 035 ®c|T
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such that the initial conditio®, satisfies
$g—ePPT =0
and define
=P+ PiQ (0 —cd)
with ¢(z, z, 1) € W* such that(c, P5) = 1.
We remark that in type Il the functio® has the form

O :=¢pdPT

with ¢(z,z,1) € L(W & W, W) solution of
0p=5Q0o
0p =erS Q6T

¢ =3®0d0 —35§ ®o —eA[S®I5 — S ®5]T.
We can now give the solutions aiSIl according to our scheme.
Theorem 5. Lets, o, ® and® be as above. Then the functions
U = Indetd — e|A]2(x2 + y?)

detd

=r+ (0, d sy =4+ ——
p + (o s) +detd>

solve thepsii equations given by (4.7) and (4.8). In terms of the functibns= @15,
h = o®~1 one can construct

S

hii=h hy:=T and hi=h hy=c¢chP

that satisfy equations (2.23) and (2.24), their components giving the wavefunctions.

Proof. Type I.From equations (4.10), (4.9) (3.3) we dedute+ ¢2P5 = 0. The Dirac
equation for(o1, 02)' can be written, once we recall equations (4.11) and (4.12), as the
differential equatioro + ¢eA6 T = 0. The wavefunctions have the form

hy = dD_ls

but
o t=r11p?

from where our expression follows. The remaining one follows in a similar fashion.
Type Il. From equations (4.10), (4.9) and the particular formpoft follows thateS = .
Use the notatior§; = § ando = o;. The Dirac equation fofo1, 02)" is equivalent, once
we recall equations (4.11) and (4.12), to the differential equatioR- AT = 0. |

The construction given in theorem 5 contains, in type I, the one-line soliton given in [1].
For type Il theorem 5 is anassiveextension of theero-massase given in [13, theorem 7].
The deformations determined by thisasson the solutions contained in [13, theorem 7],
which contains the soliton solutions of [2] in particular, will be analysed elsewhere.
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